Cranial Sutures & Craniosynostosis

Objectives

- The objectives of this presentation are to:
 - Review the imaging features of normal cranial sutures
 - Identify the characteristics of abnormal skull shape on imaging
 - Review the characteristics of the most common nonsyndromic and syndromic causes of craniosynostosis

- The bony plates of the skull communicate at the cranial sutures
- The anterior fontanelle occurs where the coronal & metopic sutures meet
- The posterior fontanelle occurs where the sagittal & lambdoid sutures meet

• The main cranial sutures & fontanelles include:

- Growth of the skull occurs perpendicular to the cranial suture
- This is controlled by a complex signalling system including:
 - Ephrins (mark the suture boundary)
 - Fibroblast growth factor receptors (FGFR)
 - Transcription factor TWIST

- The cranial sutures are important for rapid skull growth in-utero & infancy
- The cranial sutures can usually be visualised on imaging into late adulthood

Normal Radiological Appearances

Normal Radiological Appearances

- The cranial sutures can be visualised on plain radiographs
- Standard views include:
 - PA
 - Lateral
 - Townes

PA Skull radiograph

ap

Right Corright lantbor de la construction de la con

Sagittal Suture

Left Coronal Suture

Metopic Suture

Left lambdoid Suture

Townes View

Sagittal Suture

Right Coronal Suture

Right Lambdoid Suture

Right Squamosal Suture

Left Coronal Suture

Left Lambdoid Suture

Left Squamosal Suture

Lateral Skull Radiograph

Axial Computed Tomography

- On axial CT the cranial sutures can be visualised clearly
- On the following imaging a wide anterior fontanelle can be seen at the skull vertex

Cranial Sutures:

Coronal

Sagittal

3D CT

 With 3D reconstruction of the CT images, the cranial sutures can be visualised throughout their paths

Abnormal Head Shape

Craniosynostosis

- Premature fusion of one or more of the cranial sutures (craniosynostosis) occurs in approximately 1 in 2500 live births
- Lack of growth at the fused suture in combination with compensatory overgrowth at the normal sutures results in characteristic skull shape anomalies

Aetiology

- Isolated non-syndromic synostosis is thought to arise from mechanical pressure in-utero at a critical point during development
- Genetic causes of craniosynostosis include mutations in FGFR1, 2 & 3 and TWIST1

Sagittal Suture

- The sagittal suture is responsible for growth that results in widening of the skull
- The sagittal suture follows the path of the underlying sagittal sinus

Sagittal Synostosis

- Premature fusion of the sagittal suture results in a long shaped head (scaphocephaly = "boatshaped")
- This is the most common type of synostosis, accounting for 50-60% of all synostoses
- Radiological Features include:
 - Absence of sagittal suture
 - Decreased cephalic index (ratio of bicoronal distance to AP distance <75%)

Sagittal Synostosis on axial CT

Cranial Sutures:

Metopic Suture

- The metopic suture is responsible for horizontal growth of the forehead bones
- It is the only suture whose function is complete by birth
- Complete obliteration may therefore be seen at birth or within the first year of life, without pathological sequelae

Metopic Synostosis

- Premature fusion of the metopic suture results in a triangular shaped deformity (trigonocephaly)
- It accounts for 5-10% of synostoses
- Radiological features include:
 - Hypotelorism
 - Trigonocephaly
 - Upward elongation & medial rotation of orbits
 - Absence of the metopic suture (in presence of above features)

Metopic Synostosis on axial CT

Cranial Sutures:

Coronal Suture

- The coronal suture is responsible for growth in the AP direction
- Premature fusion of the coronal sutures may be unilateral or bilateral
- Unicoronal synostosis is more likely to be an isolated non-syndromic event than its bilateral counterpart

Unicoronal Synostosis

- Unicoronal synostosis results in anterior plagiocephaly
- It accounts for 10-15% of synostoses
- Radiological features of unicoronal synostosis include:
 - Absence of one of the coronal sutures
 - Flattening of the forehead on the affected side
 - Deviation of the nose to the opposite side
 - Elevation of the orbit on the affected side
 - Upward rotation of lesser wing of sphenoid on AP skull radiograph = Harlequin sign

Unicoronal Synostosis on axial CT

Cranial Sutures:

Bicoronal Synostosis

- Bicoronal synostosis results in brachycephaly
- It accounts for 5-10% of synostoses
- Radiological features of bicoronal synostosis include:
 - Absence of both coronal sutures
 - Shortening in the AP direction
 - Bilateral Harlequin eye signs (on skull radiograph)

Bicoronal Synostosis on axial CT

the second se

Cranial Sutures:

Lambdoid Synostosis

- Rarest of the isolated synostoses
- It accounts for 1% of all synostoses
- Radiological signs:
 - Absence of suture
 - Flattening over synostosed suture
 - Mastoid overgrowth resulting in bulge behind involved ear
 - Temporo-parietal bossing on opposite side

Right Lambdoid Synostosis on axial CT

Cranial Sutures:

Multiple Suture Synostosis

- Involvement of multiple sutures is often as a result of an identifiable genetic cause
- The most common syndromic causes of craniosynostosis include:
 - Muenke Syndrome
 - Saethre-Chotzen Syndrome
 - Crouzon Syndrome
 - Apert Syndrome
 - Pfeiffer Syndrome

Apert Syndrome

- Mutation in FGFR2 on Chromosome 10
- Multiple suture synostosis usually coronal sutures with enlarged anterior fontanelle
- Mid-face hypoplasia
- Complex acrosyndactyly of the hands & feet

AP radiographs of hands (top) and feet (bottom) showing complex syndactyly in child with Apert Syndrome

Crouzon Syndrome

- Mutation in FGFR2 or FGFR3
- Bicoronal synostosis
- Mid-face hypoplasia
- Normal hands

Lateral cephalogram demonstrating mid-face hypoplasia in child with Crouzon syndrome

Muenke Syndrome

- P250R FGFR3 mutation on chromosome 3
- Coronal synostosis
- Bitemporal bossing
- Sensorineural hearing loss

Lateral 3D CT view of bicoronal synostosis in child with Muenke syndrome

Saethre-Chotzen Syndrome

- Mutation or deletion of TWIST1
 gene on Chromosome 7
- Most frequently bicoronal or unicoronal synostosis
- Low frontal hairline
- Eyelid ptosis
- Soft tissue syndactyly (variable)

Left unicoronal synostosis in child with Saethre-Chotzen syndrome

Pfeiffer Syndrome

- Mutation in FGFR1 or FGFR2
- Usually bicoronal synostosis
- Broad thumbs/ great toes
- Syndrome most commonly associated with pansynostosis (clover-leaf deformity)

AP radiograph of right foot showing broad great toe in child with Pfeiffer syndrome

Clover-leaf Deformity

3D CT in child with Pfeiffer syndrome

Note the clover-leaf deformity with multiple areas of bony defects

Management

- Surgical management is indicated in:
 - Emergency Situations:
 - Airway protection
 - Eye protection
 - Raised intracranial pressure
 - Elective:
 - To prevent progressive deformity
 - To prevent development of raised intracranial pressure

Management

- For metopic & coronal synostosis this is frequently with fronto-orbital advancement and remodelling
- For sagittal synostosis this is frequently with sub-total or total calvarial remodelling

Management

 Alternative surgical techniques include the use of distraction osteogenesis

Lateral skull radiograph showing bilateral distractors and distraction gap. This is posterior distraction.

Plagiocephaly without Synostosis

- This is a clinical diagnosis
- Deformational/positional plagiocephaly occurs without premature fusion of the sutures
- There is a parallelogram deformity of the skull when viewed from vertex
- Radiological features include:
 - All cranial sutures visible
 - On AP skull radiograph there may be rotation due to positioning of the infant on the flattened side on radiography plate

Summary

References:

http://www.cincinnatichildrens.org/health/c/craniosynostosis/ http://www.ohsu.edu/xd/health/services/doernbecher/programs-services

Radiological Features of Synostosis

- Primary Changes:
 - Loss of sutural interdigitations
 - Loss of suture lucency
 - Sclerosis of suture
 - Raising (lipping) of suture
- Secondary Changes:
 - Abnormal skull shape
 - Copper beating (suggesting raised ICP)
 - Harlequin sign (on plain radiograph)

Further Reading

- Johnson D, Wilkie AO. Craniosynostosis. Eur J Hum Genet. 2011; 19(4): 369-76
- Branson HM, Shroff MM. Craniosynostosis and 3-Dimensional Computed Tomography. 2011; 32(6): 569-577
- Kirmi O, Lo SJ, Johnson D, Anslow P. Craniosynostosis: A radiological and surgical perspective. Semin ultrasound CT MR. 2009; 30(6):492-512