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BJR is the international research journal of the British Institute of Radiology and is
the oldest scientific journal in the field of radiology and related sciences.

An international, multi-disciplinary journal, BJR covers the clinical and technical
aspects of medical imaging, radiotherapy, oncology, medical physics, radiobiology
and the underpinning sciences. BJR is essential reading for radiologists, medical
physicists, radiation oncologists, radiotherapists, radiographers and radiobiologists.

BJR

Aidence was founded in November 2015 by Mark-Jan Harte (CEO) and Jeroen van
Duffelen (CBO). Based in the Netherlands and the UK, Aidence rallies over 60 data
scientists, software engineers, medical, regulatory, and business professionals to
provide intelligent software for the lung cancer pathway.

Aidence’s first clinical application is Veye Lung Nodules, an AI-based solution for
pulmonary nodule management on chest CTs. The solution is certified under the EU
Medical Device Regulation and can be used as a second or concurrent reader. Veye
Lung Nodules is currently running in routine practice and lung cancer screening
across Europe, analysing thousands of patient scans each week.

Aidence is the preferred AI vendor for the NHSE Targeted Lung Health Checks. Most
sites involved in the programme use Aidence's solutions to detect, assess the
evolution of, and report on lung nodules.

Aidence is part of the AI division of RadNet, a US-based leading provider of
diagnostic imaging services.
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Do radiologists make better decisions with AI?  
The INPACT study is set to find out 

 
By David King, Project & Delivery Manager at Aidence 

 
 
Project INPACT is go!, reads a recent tweet from clinical consultancy Hardian Health. We have 
officially launched novel research into a fascinating yet understudied area: the human-machine 
relationship. Project INPACT (Investigating Nodule Protocol Adherence using CADe/x Technology) 
will give us insights into the impact of an artificial intelligence (AI) medical solution on physicians’ 
decision-making. 

Most scientific literature on AI clinical applications focuses on their performance, for instance 
showing a device is safe, effective, and works as intended. INPACT, on the other hand, is one of the 
few studies examining AI in actual clinical practice: the reporting of chest CT scans in radiology 
departments across UK hospitals. The project is a collaboration between Aidence, Hardian Health, 
and the University of Edinburgh, with funding from the UK’s National Health System (NHS) through 
the AI in Health and Care Award. 

In this article, we explain the reasoning behind and the design of INPACT. 

AI for early lung cancer detection 

Early detection is the best chance of improving outcomes for lung cancer patients. There are two 
main opportunities to ensure it: targeted screening programmes inviting individuals at-risk for a low-
dose chest scan, and the reporting and follow-up of indeterminate lung nodules found incidentally in 
clinical practice. 

The INPACT study will focus on the latter. Most lung nodules detected in routine practice are benign, 
but some are cancerous. Their identification and follow-up are essential to an early lung cancer 
diagnosis, when a cure may still be possible. However, these tasks are challenging for physicians, 
requiring them to spot millimetric lesions with the naked eye, characterise, and measure or segment 
them (semi-)manually. For a workforce already under strain, it is additional, demanding work.  

AI tools have the potential to identify incidental pulmonary nodules on chest CTs, classify them, and 
provide accurate measurements to assess growth. As part of the INPACT project, radiologists will 
report on these findings using AI-based solution Veye Lung Nodule, our CE certified second or 
concurrent reader, fully integrated into the hospital IT infrastructure. The aim is to investigate this 
solution’s effect on physicians’ follow-up decisions. 
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The reasoning behind INPACT 

The Venn diagram below showcases the position of AI medical solutions in healthcare. On the left, 
clinical validation research is the topic of many publications aiming to demonstrate the performance 
of an application. For commercially available medical devices, it is also a regulatory requirement. (You 
can find out more about the validation study which confirmed Veye Lung Nodules’ performance on 
this page.) 

On the right, clinical outcomes represent the endpoints we are trying to influence by introducing AI 
devices in care pathways. This area is largely unexplored because AI technology is still in its early 
stages. We have not had the time or resources to complete extensive clinical trials, often spanning 
over many years, to assess if patients whose doctors use AI systems receive a more precise or timely 
diagnosis or care. 

With the INPACT project, we zoom in on the middle: the real-world use of AI in clinical practice. 

 

Our assumption is that radiologists using an AI-based solution for lung nodule management and 
reporting may come to a different follow-up recommendation than they would have without AI. This 
different follow-up recommendation may be more in line with what an experienced radiologist 
specialising in chest imaging would have given. It is possible that, in the absence of the supporting 
tool, radiologists would have missed small nodules or come up with inaccurate measurements. 

Participating hospitals 

The study will be performed in the radiology departments of six hospitals in the UK: NHS Lothian / 
Royal Infirmary of Edinburgh, University Hospital Southampton NHS Foundation Trust (FT), Royal 
Cornwall Hospitals NHS Trust, North West Anglia NHS FT, Liverpool Heart and Chest Hospital NHS 
FT, Royal United Hospitals Bath NHS FT. 
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(solid or sub-solid), size (diameter and volume) and growth (growth percentage and volume doubling 
time from the prior scan, if available). Here is an example of a report generated by Veye Lung Nodules: 

 

After the aided reading, the radiologist may adjust their initial follow-up or management 
recommendation and provide an explanation for the change and feedback on Veye’s results. To 
streamline this step, we created a simple case report form which should only take a couple of minutes 
to fill in. 

A radiology expert at each centre – i.e. a consultant with around ten years of experience in thoracic 
imaging – will independently evaluate all cases where one or more nodules were identified by either 
the radiologist or Veye. This expert may also consult with a pulmonologist on complicated cases. 
With readings aided by Veye Lung Nodules, it is likely to reach a higher agreement between the expert 
and the less specialised radiologists reading the scans. 

We hypothesise that the AI-based automated detection, classification and quantification of lung 
nodules will reduce the influence of human measurement errors and allow radiologists to make a 
better recommendation for managing the nodules. 

A mixed-method approach 
Once collected, we will look at the results from two different perspectives: 

● Quantitative 

The radiologist’s potential performance boost when using Veye Lung Nodules. We will gather this 
data by analysing the filled-in forms. 

● Qualitative 
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Dr Rishi Ramaesh, consultant radiologist at NHS Lothian and principal investigator, explained his 
motivation for participating in the study: 

“The INPACT study is a highly novel and exciting evaluation that will demonstrate tangible and 
real world benefits of using artificial intelligence in clinical radiology practice. The study aims 
to show that radiologists using AI in their clinical practice are safer and more efficient, along 
with clear benefits to patients and healthcare systems. 

The results of the INPACT study are sure to strengthen the case for widespread adoption of AI 
tools into the NHS.” 

The study design 

The sample of cases for this study will consist of up to 750 unique chest CT scans per centre, adding 
up to approximately 4,500 cases in total over six months. A primary consideration in the design of 
this study has been ensuring that radiologists spend the least amount of time possible on the study 
while collecting enough data to make it feasible. INPACT will be a prospective and comparative study, 
with the following design: 

Aided and unaided readings 
The radiologists at the participating centres will assess the eligible CT scans for lung nodules and 
provide their recommendations according to the British Thoracic Society (BTS) guidelines, as they 
would normally in routine clinical practice. 

First, they will analyse the image unaided by Veye Lung Nodules and decide on the next steps. Then, 
they will provide a consecutive reading with access to Veye’s results: detected nodules, their type 

The study design

Aided and unaided readings
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The level of confidence that the radiologist has in understanding and accepting the outputs of Veye 
and using these outputs in their clinical decision-making. To obtain this data, researchers from the 
School of Social and Political Science at the University of Edinburgh will conduct interviews with 
participating radiologists before and after using Veye Lung Nodules. 

Health economics 
If Veye Lung Nodules has a beneficial impact on a radiologists’ decision, we can follow this decision 
through the rest of the clinical pathway and into the patient outcome. This would allow us to pinpoint 
the benefit of using the device for early detection and possibly life-saving treatment. 

For this purpose, our partners at Hardian Health will perform health economics and cost-
effectiveness modelling. Cost-effectiveness analyses (CEA) are recognised as the gold standard in 
health economic evaluations. The National Institute for Health and Care Excellence (NICE), for 
example, is considering it for the upcoming Evidence Standards Framework for digital health 
technologies. 

Using the outputs of the quantitative research, the researchers will extrapolate their impact using 
health economics modelling techniques. Dr Hugh Harvey, Managing Director at Hardian Health, 
emphasises the value of this part of the study design: 

“Clinical impact is vitally important to demonstrate in order to gain trust from end-users, but 
health economic evaluations are equally as important in helping gain trust from payers, 
especially in state-funded and evidence-based healthcare systems such as the NHS.” 

The below image is a summary of the INPACT approach: 

 

A blueprint for future research 

Health economics
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The pace at which AI medical devices are brought to market exceeds the time and budget for clinical 
trials assessing their impact. Since the NHS is at the forefront of adopting new technologies, it needs 
more agile ways of evaluating AI solutions in the real world. NICE, in fact, is also consulting on a real-
world evidence framework. 

INPACT might serve as an example of such a framework. The design of the study and the lessons we 
will learn may be generalisable into a blueprint for assessing the application of AI in radiology. Its 
strength is that it does not require a large infrastructure or extended period. However, it will likely yield 
valuable results, allowing us to understand how AI makes a difference in patient outcomes. 

The results of INPACT are planned for the end of 2022.  

A blueprint for future research
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COMMENTARY

European lung cancer screening: valuable trial evidence 
for optimal practice implementation
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Lung cancer screening (LCS) trials have showed the po-
tential of diagnosing early stage lung cancer (LC) with re-
duction of mortality in high risk populations. In 2011, the 
National Lung Screening Trial (NLST) demonstrated that 
CT outperformed chest radiography (CXR) in the detec-
tion of early stage LC.1 In the following decade, several Eu-
ropean trials reported analogous results, albeit with smaller 
populations and variable eligibility criteria and LCS algo-
rithm.2 To date, European LCS trials show that (i) high-risk 
profiling is critical,3 (ii) volume measurement of lung nod-
ule provides high yield,4,5 (iii) prolonged LCS offers incre-
mental efficacy,6 (iv) biennial rounds may be considered 
after negative low-dose computed tomography (LDCT) to 
save costs and radiation burden,4,5,7 and (v) females expe-
rience a higher reduction of LC mortality as compared to 
males.8,9 These conclusions support more widespread pro-
motion of LCS to European populations.

In 2020, the European Society of Radiology (ESR) and 
European Respiratory Society (ERS) issued a joint state-
ment paper highlighting the pivotal requirements for LCS 
implementation in Europe.10,11 This document expands 
former scientific and governmental recommendations12–26 
(Table 1), with the main objective of practice standardisa-
tion in different European countries, and across the various 
LCS stakeholders (i.e. candidate participant, general practi-
tioner, specialized LCS centre).10,27 In this commentary, we 

discuss critical topics for efficient LCS: (i) engagement of 
the target population, (ii) optimized protocol for manage-
ment of LDCT findings, and a (iii) reference standard for 
quality assurance (QA).

ENGAGEMENT OF THE TARGET POPULATION
The integration between LCS stakeholders is a substantive 
challenge for LCS initiation, as extensively documented in 
the United States since 2015.28 The initial engagement of 
potential LCS participants is uniquely challenging.29 LCS is 
the first major targeted large-scale screening programme: 
unlike breast or colon screening, the recruitment of LCS 
participants is highly predicated upon self-awareness of 
personal risk and willingness to participate over successive 
rounds.30 The UK Lung Screen tackled the issue of LCS 
recruitment by testing mail letters: agreeable respondents 
were mostly below the threshold of established minimum 
risk of LC, whereas adherence was lacking among those at 
higher risk of LC.31 Remarkably, current smokers and those 
of lower socioeconomic status have shown lower participa-
tion rates across both the EU and USA.32,33 The perceived 
stigmatization of smoking-related risk might steer one away 
from LCS.34 Quaife et al investigated the patients’ views on 
LCS by interviewing a diverse cohort of current smokers, 
former smokers, and never smokers.35 They reported that 
recruitment by general practitioners (GPs) recommenda-
tion was associated with the highest LCS intention. It was 
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ABSTRACT

Lung cancer screening (LCS) by low-dose computed tomography is a strategy for secondary prevention of lung cancer. 
In the last two decades, LCS trials showed several options to practice secondary prevention in association with primary 
prevention, however, the translation from trial to practice is everything but simple. In 2020, the European Society of 
Radiology and European Respiratory Society published their joint statement paper on LCS. This commentary aims to 
provide the readership with detailed description about hurdles and potential solutions that could be encountered in 
the practice of LCS.
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Table 1. 

Eligibility 
criteria:

age
Eligibility criteria:
smoking history

LCS 
management:

LDCT interval

LCS management: 
participants’ selection - LCS 

design
US Preventive Services Task 
Force16

55–80 30 pack-year smoking history 
and currently smoke or have 
quit within the past 15 years

Annual LCS should be discontinued once a 
person has not smoked for 15 years 
or develops a health problem that 
substantially limits life expectancy 
or the ability or willingness to have 
curative lung surgery.

American Cancer Society 
Recommendations for the 
Early Detection of Cancer in 
Average-Risk Asymptomatic 
Adults17

55–74 30 pack-year smoking history 
and currently smoke or have 
quit within the past 15 years

Annual Eligible subjects have undergone a 
process of informed/shared decision 
making that included information 
about the potential benefits, limitations 
and harms of LDCT screening
Having access to high-volume, high 
quality LCS and treatment center 
and - if current smokers - to smoking 
cessation counselling

National Comprehensive 
Cancer Network18

Group 1: 55–75
Group 2:≥50

Group 1:≥30 pack years, quit 
<within the past 14 years, 
current smoker
Group 2:≥20 pack years, 
other risk factors (other than 
second-hand smoke)

Annual Additional risk factors include cancer 
history, lung disease history, family 
history of LC, radon exposure, 
occupational exposure and history of 
COPD or pulmonary fibrosis

Centers for Medicare & 
Medicaid Services (CMS)19

55–77 ≥30 pack years and either 
continue to smoke or have quit 
within the past 15 years

Annual Asymptomatic subjects who receive 
written order for LDCT LCS

American College of Chest 
Physicians20

55–77 ≥30 pack years and either 
continue to smoke or have quit 
within the past 15 years

Annual Asymptomatic smokers and former 
smokers

NHS21 55–74 The Targeted Lung Health Check 
Programme will use the PLCOm2012 
risk prediction model and the LLPver2 
to select participants to be offered LCS
PLCOm2012 risk of ≥1.51% over 6 
years or LLPver2 5 year risk of ≥2.5%

Poland22 Group 1: 55–74
Group 2: 50–74

Group 1: 20 pack years, 
maximum 15 years since 
quitting
Group 2: additional risk factor, 
20 pack years, maximum 15 
years since quitting

Annual

Germany - Deutsche 
Krebsgesellschaft, 
Arbeitsgemeinschaft 
der Wissenschaftlichen 
Medizinischen 
Fachgesellschaften (Association 
of the Scientific Medical 
Societies in Germany)23

Group 1: 55–74
Group 2: 50–74

Group 1:≥30 pack years and 
either continue to smoke or 
have quit within the past 15 
years
Group 2:≥20 pack years and 
other risk factors

Annual Associated with smoking cessation 
counselling, for a duration of at least 
2 years

Austria - Österreichischen 
Röntgengesellschaft und der 
Österreichischen Gesellschaft 
für Pneumologie (Austrian 
Society of Roentgenology 
and Austrian Pulmonological 
Society)24

>55 ≥30 pack years and either 
continue to smoke or have quit 
within the past 15 years

Annual

Canadian Task Force on 
Preventive Health Care25

55–74 ≥30 pack years and either 
continue to smoke or have quit 
within the past 15 years

Annual LCS - up to three consecutive years 
- should only be done in health care 
settings with access to expertise in early 
diagnosis and treatment of lung cancer

(Continued)
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also observed that smokers had little confidence in early diag-
nosis for improvement of quality of life and in surgical resection 
of early-stage LC, despite they were aware of the risk of LC and 
its poor prognosis when diagnosed at symptomatic stage.35 Opti-
mized recruitment strategy by active involvement of GP might 
improve willingness of high risk subjects to agree to multiple 
rounds of LCS.36 This approach would tighten connections 
throughout the healthcare network, potentially improving the 
recruitment process by limiting the risk of stigma attached to 
tobacco and lung cancer.35 The involvement of GP must be seen 
as a golden opportunity to introduce personalized secondary 
and primary prevention, as it also includes actively encouraging 
smoking cessation.37 The Lung Screen Uptake Trial (LSUT) 
showed an excellent uptake above 50% by a targeted stepped 
invitation by letters from primary care practice.38 Of note, the 
LSUT also reported that social disparities can be smoothen by 
targeting psychological barriers with low-burden information.38 
Furthermore, beyond smoking habit, the evolving epidemi-
ology of LC demands continuous adaptation of inclusion criteria 
(and risk models) to emerging risk factors such as air pollution, 
former history of cancer, and genetics.39–41

Geographical accessibility to CT equipment is another important 
roadblock27,34 and was initially acknowledged in the UK, where 
mobile CT scanners were deployed to obtain equity in access in 
remote areas.31 However, this solution has not proven to confer 
any substantive advantage for engagement of screenees in both 
the EU and USA, and applications may differ between densely 
populated urban centers and more rural areas.42,43 Moreover, 
recent evidence demonstrated that LCS adherence is higher 
among participants screened with a centralized approach as 
compared to those screened within a decentralized program.44

Complex psychosocial effects of multiple rounds of screening 
must be acknowledged and addressed pre-emptively. Anxiety 
might be generated by radiological reporting of abnormalities, 
hence the lexicon in LDCT reporting should be adapted to 
minimize the psychological impact. One example comes from 
the definition of positive nodules: the NLST reported “positive” 
finding for any case with solid nodule >4 mm (about 40% of the 
population in three rounds), whereas more recently the Euro-
pean literature sustained milder and more nuanced terminology 
such as “indeterminate” finding for solid nodules below 300 mm3 
or 8 mm in size.15,45 The latter approach is targeted to reduce 
the psychological burden in a large proportion of screening 
participants for whom detection of intermediate size nodule 
is expected and will likely represent a benign finding. Brain et 

al reported anxiety for participants with abnormal screening 
results requiring repeat imaging, with progressive reduction in 
self-reported anxiety after 2 years of follow-up.46 Other authors 
reported no evidence of distress beyond 6 months.47 Despite 
general agreement on the psychological distress from LCS, 
Kummer et al reported that the overall increase in anxiety is 
unlikely to represent clinically relevant difference.48

Engagement and adherence to LCS program might be favored in 
subgroups of population already undergoing regular screening 
rounds (e.g. mammography). LCS trials reported a more favor-
able outcome in females compared to males,8,9 probably because 
of the relatively higher representation of slow-growing adenocar-
cinoma in females.8 LCS screening in female gender will assume 
greater importance with the reported increase in tobacco use 
among females.49 Such habit anticipates a long perspective of 
increased LC risk, which is expected to fluctuate with a 30–40 
years delay since change in population smoking habit.50

Opportunistic screening is undergoing screening outside of the 
screening environment that might occur when a LCS program 
does not exist or, otherwise, when LCS program exists but infor-
mation about its applicability is lacking.51,52 It is characterized by 
high rate of inappropriate referral to CT (or even worse to radiog-
raphy) and by high risk of inadequate management of radiolog-
ical findings.51 Thus, one further reason to promote LCS practice 
is for tackling the growing phenomenon of voluntary oppor-
tunistic screening. The variable response between screening 
reluctance and opportunistic conduct warrants improving trust 
relationships with participants by a clear explanation and under-
standing of both advantages and potential harms of LCS. Major 
topics for discussion with LCS candidates include the possibility 
of false positive (invasive procedures/surgery for non-malignant 
findings), interval cancers, and psychological impact.27,34,53 For 
these reasons, personalized stratification of risk should be prior-
itized and pursued by proactive collaboration between periph-
eral healthcare professionals (e.g. GP) and specialized personnel 
operating in LCS facilities (e.g. specialized nurse, radiologist, 
pulmonologist, surgeon).54–56 Refined information strategies for 
both participants and peripheral facilities might indeed represent 
one reason of the recent growth in LCS uptake in the USA.43,57

OPTIMIZED PROTOCOL FOR MANAGEMENT OF 
LDCT FINDINGS
As LCS is performed by LDCT,1,58 the spatial resolution of this 
imaging technique provides high anatomical detail and leads to 
the detection of a wide range of findings. The management of any 

Eligibility 
criteria:

age
Eligibility criteria:
smoking history

LCS 
management:

LDCT interval

LCS management: 
participants’ selection - LCS 

design
Japan Radiological Society26 ≥50 Brinkman Index ≥ 600 Brinkman Index is calculated as the 

number of cigarettes smoked per day 
multiplied by the number of years of 
smoking

COPD, chronic obstructive pulmonary disease; LC, lung cancer; LCS, lung cancer screening; LDCT, low-dose computed tomography.

Table 1. (Continued)
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finding should be weighted on the individual risk that takes into 
consideration personal comorbidities and survival rates. This is 
a main determinant of the risk-benefit balance in LCS, which 
includes elderly smokers with comorbidities and, therefore, 
requires evidence-based protocols to mitigate overinvestiga-
tion, overdiagnosis, overtreatment, and associated psychological 
impact, costs, and risks.

Each pulmonary nodule on LDCT is individually assessed for 
its cancer risk by using density, size, and further morphological 
descriptors.59,60 These features subsequently drive the protocols 
for lung nodule management in major guidelines.13,15,61 Enrol-
ment or baseline (initial) LCS round shows a higher frequency of 
indeterminate findings compared with the following rounds.62,63 
The high prevalence of indeterminate nodules may be addressed 
with the Brock model, a multifactorial score for cancer risk on 
baseline LDCT.64 The Brock model underscores the high likeli-
hood of cancer in subsolid nodules, however, the risk of overdiag-
nosis and overtreatment is high in this type of nodules.65 Subsolid 
nodule represents a phenotype of adenocarcinoma with slow 
growth and relatively low risk of distant disease.66 This scenario 
introduces the major concern related to LC overtreatment and 
its associated risks, notably in elderly smokers with comorbidi-
ties. First, most overinvestigation and overtreatment is expected 
from nodules with intermediate size (about 10–20% at base-
line round) and/or subsolid in density.56 Second, most nodules 
with these features are extremely unlikely to evolve in stage shift 
within the following 6–12 months.67 Most guidelines suggest 3 
month follow up for indeterminate lung nodules, whereas the 
Lung Reporting And Data System (LungRADS) recommends 6 
month follow-up (category 3). The LungRADS approach might 
be regarded as pragmatic adaptation of follow-up interval to 
warrant an optimized time range for evolution of the finding 
and more conclusive longitudinal measurement, compared with 
3 month follow-up.61 Furthermore, the literature showed that a 
conservative approach by annual LDCT until signs of growth is a 

safe strategy for controlling work-up and intervention of subsolid 
nodules.68–70 Appropriate and rigorous application of evidence-
based management of nodules is key for optimized risk–benefit 
ratio of LCS. The extended analysis of NLST beyond 10 years 
showed similar frequency of LC between LDCT and CXR arm, 
suggesting that early diagnosis by CT does not imply overdiag-
nosis.71 One large randomized controlled trial, the SUMMIT 
study (50,000 participants; ​ClinicalTrials.​gov NCT03934866), 
was designed with parsimonious use of LDCT information 
(both for nodule and incidental findings)72 and their conclusions 
should be ready within a decade.

Compared to nodule management, the handling of incidental 
LDCT finding seems to be more difficult. The potential costs of 
frequent incidental LDCT findings in the NLST were a matter of 
concern for both Medicare Evidence Development and Coverage 
Advisory Committee and the American College of Physicians.73 
The NELSON group reported neglectable benefit from seeking 
incidental findings on LDCT.74 However, incidental findings and 
comorbidities may represent extrapulmonary malignancies75 or 
non-oncologic actionable findings: potentially significant abnor-
malities were reported in almost 20% of screenees.76 Gareen et 
al demonstrated that the medical costs were similar across the 
two arms of the NLST, despite the higher rates of incidental 
findings detected by LDCT as compared to CXR.77 The manage-
ment of incidental findings still represents a gray area of LCS. 
This matter should be approached with extreme caution when 
considering deployment of LCS at the population level: excess 
reporting might both increase cost–risks of LCS and discourage 
participants, who feel overwhelmed by the burden of infor-
mation. The frequency of incidental findings might approach 
100% in selected high-risk population (e.g. coronary calcifica-
tions, signs of emphysema, etc.), and may depend on the expe-
rience of the reading radiologist. Therefore, clinically oriented 
reporting of incidental findings is a fundamental of LCS with 
LDCT. Incidental LDCT findings with moderate risk of cancer 

Figure 1. A. LDCT of a 73-year-old female patient, showing a 28-mm solid nodule (white arrow) located in the right upper lobe. 
The nodule is attached to vessels and was missed by a computer-aided detection system: false negative of CADe. B. Same patient 
of A, Maximum Intensity Projection image. CADe, computer-assisted detection; LDCT, low-dose computed tomography
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might deserve work-up or, if possible, follow-up during annual 
surveillance. The current practical experience of most LCS 
multidisciplinary teams encourages a standardized management 
for incidentaloma, similar to that in the general population, as 
advocated by several white papers from the American College of 
Radiology78 and the recommendations from the National Health 
System England.21

REFERENCE STANDARD FOR QUALITY 
ASSURANCE
QA is backbone to all medical procedures, especially for those 
practices that involve heterogeneous level of skills and expertise. 
For this reason, several scientific societies and public authorities 
put substantial effort to provide guidance for standardized QA in 
LCS. In the USA, the American Cancer Society proposed stan-
dard indicators of QA with major emphasis on compliance to 
follow-up recommendations.79 In Europe, the European Society 
of Thoracic Imaging promotes educational initiatives to ensure 
uniform interpretation and limit the variation in responding to 
the detected findings and their management by using predefined 
protocols.80 Semi-automated software is encouraged for nodule 
detection and measurement, in alignment with both interim anal-
ysis and results of the NELSON trial.9,81–83 The use of computer-
aided detection (CADe) for LCS meets two major needs: (a) 
resource optimization by reduction of reading time,84,85 (b) a 
guarantee of measurement reproducibility.86

CADe systems are typically set for detection of “nodule candi-
dates” within a limited size range, to minimize the rate of false 
candidates: for this reason, CADe systems are extremely sensi-
tive for nodules <10 mm, but also prone to overlooking larger 
nodules. Therefore, false negatives for large nodules should be 
expected while using CADe (Figure 1). Large findings, however, 
are easily detected by visual reading, especially by maximum-
intensity projection (MIP) reconstructions.87–89 The most accu-
rate reading of LDCT is granted by coupled CADe and MIP 
read-out.

The use of semi-automated nodule volumetry is associated with 
variability in nodule volume.90,91 On the other hand, manual 
electronic caliper tolerance is reported 1.5–2 mm, reflecting 
a significant volume variability (even above 100%) in small-
intermediate nodule (diameter 6–8 mm).61,92 Therefore, semi-
automated volumetry is strongly recommended to minimize 
the number of positive or indeterminate tests. Furthermore, this 
is an excellent mean for fast and accurate calculation of longi-
tudinal dynamic metrics, such as the volume doubling time.82 
Nonetheless, pitfalls of semi-automated volumetry must be 
acknowledged to avoid excessive confidence. Major concerns 
of semi-automated volumetry are represented by variability 
between software vendors (also between different versions of the 
same software) and high variability in case of nodules attached 
to solid structures (Figure  2).93–95 Finally, beyond “technolog-
ical” parameters, clinical and morphological characterization 

Figure 2. LDCT images showing a solid nodule abutting the pleura (A, manual caliper; B, semi-automated volume segmentation) 
compared to a solid nodule without solid interface (C, manual caliper; D, semi-automated volume segmentation). Despite same 
average diameter (6 mm), the volumetry resulted in substantially different values due to the inaccurate volumetric segmentation 
of the subpleural nodule (B), which partially included the pleura. Manual measurement is suggested in case of nodules with at least 
1/3 solid interface. LDCT, low-dose computed tomography
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are still of utmost importance for optimal management of rela-
tively large nodules with clearly benign characteristics, such 
as fissure attached lymph nodes and benign calcifications.96–98 
Potential future perspective for the characterization of the 
biological behavior of pulmonary nodules are seen in “advanced 
quantitative” descriptors.99–103 Artificial intelligence (AI) with 
“multiomic” approach (i.e. by integrating imaging, functional 
and biological parameters) is now under development with the 
aim of further stratifying the risk of LC.100,103 Nonetheless, for 
AI to be fully implemented within the forthcoming LCS setting, 
future studies are needed to test and confirm its consistency and 
accuracy in lung nodule characterization. Integration of imaging 
and circulating biomarkers (e.g. plasma microRNA) proposed 

for further refinement of individualized biological characteriza-
tion,104 will likely be object of debate in coming years. For the 
best integration of the multifaceted aspects of LCS, dedicated 
facilities and skilled human resources (including trained radiol-
ogists) are critical to limit the risk of excessive work-up.105

In conclusion, LCS as part of our population health management 
is advancing in several countries and it is expected to improve LC 
survival. The success of LCS will depend on optimal engagement 
of target population, optimized use of resources, and continuous 
development of procedures at local, national, and international 
levels.
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INTRODUCTION
The advent of artificial intelligence (AI) heralds a new era in 
digital data analysis and empowers us to interpret complex 
systems through unprecedented modeling capabilities. 
This power of AI has led to an explosion of applications 
across multiple disciplines including computer vision, and 
more recently, health care. Clinical care stands to benefit 
tremendously from AI to expose meaningful relationships 
in complex data sets obtained from clinical imaging to 
molecular medicine. Although AI still is a nascent field in 
many health-care domains, initial applications and proof-
of-concept studies have shown promising and impactful 
results in diagnosing different disease conditions using 
only raw data sources like diagnostic imaging.1,2 Thus, 
the immense analytic capacity of AI technology based on 
machine learning and deep learning will power human 
decision-making and complement human cognitive capa-
bilities. Beyond equipping physicians with new abilities, 
data-driven modeling, as opposed to just model-based 
methods, is serving as a robust paradigm that can further 
improve the current cutting-edge algorithmic approaches 
in image formation, reconstruction, and post-processing.

The functional lung imaging community is recognizing the 
transformative power of AI. The data-driven approaches 
are well-positioned to invigorate established techniques 
in this field, improving robustness and often surpassing 
existing capabilities. Current functional lung imaging 

modalities utilize the underlying physics of the image 
properties related to different disease conditions of the 
lung.3 The amount of data elements generated in functional 
imaging acquisitions, such as multiple MRI snapshots 
during free-breathing acquisitions or different CT energies, 
is amenable to applying data-driven approaches to discover 
novel relationships across different imaging phases, which 
otherwise would be difficult to identify. Various functional 
imaging modalities rely on advanced acquisitions and 
post-processing approaches, and hence AI is attractive as a 
primary modeling strategy.

Although AI applications in diagnostic imaging have 
increased rapidly in the last few years,4,5 its clinical appli-
cation to functional lung imaging is currently more of 
an evolving opportunity than a tested reality. Farhat et 
al6 recently reviewed the application of deep learning in 
pulmonary medicine imaging and noticed that the use of 
AI in lung imaging is mostly circumscribed to chest CT 
and X-rays (CXR). In this review, we take a comprehen-
sive look at the growing interest in applying AI technology 
specifically to pulmonary functional imaging and assess 
the underlying concepts of the proposed methodologies 
that utilize machine- and deep learning for state-of-the-art 
image reconstructions, functional assessment, and func-
tional imaging synthesis. We evaluate the opportunities AI 
presents and weigh in on the challenges ahead for success-
fully implementing AI in pulmonary functional imaging.
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ABSTRACT

Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image recon-
struction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evalua-
tion of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory 
conditions. In this review, we overview the current developments and expound on some of the encouraging new fron-
tiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, 
quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and 
challenges ahead in adopting AI for functional lung imaging in clinical settings.
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DEEP LEARNING IN MEDICAL IMAGING
The emergence of AI as a key component in medical imaging 
techniques is largely propelled by vast improvements in machine 
learning, specifically, deep learning. Deep learning performs a 
wide variety of challenging tasks, including classification, regres-
sion, clustering, image reconstruction artifact reduction, lesion 
detection, segmentation, and registration.7 Deep learning is 
an extension of artificial neural networks8 as a core building 
block. Deep learning gained importance in computer vision 
when neural networks outperformed other methods on several 
visual recognition tasks. Deep learning in medical imaging is 
primarily based on the convolutional neural network (CNN) 
paradigm. LeCun9 introduced the CNNs to extend the use of 
neural networks from 1D signals to multi  dimensional signals 
like 2D or 3D volumes and provide a powerful way to learn 
representations of images and solve recognition tasks. CNNs are 
constructed with units of a compact kernel of neurons that slides 
across an image to produce an output image map. Neurons act 
like logistic regressors that generate a response at each image 
location as a weighted sum of the image intensities. The kernels 
define the weight of each location, and these neural kernels are 
assembled in multiple channels to create a CNN convolutional 

layer. Several such layers that function differently but comple-
mentary make up the CNN (Figure  1A). Information flows in 
a forward fashion, and deeper and deeper layers aggregate it in 
a non-linear manner. The success of CNNs in medical imaging 
inspired the development of other deep learning paradigms to 
exploit the various aspects of the information flowing through 
the network. A few examples of such advanced network methods 
are recurrent neural networks (RNN), autoencoders (AE), and its 
variations like U-Nets, generative adversarial networks (GANs), 
and more recently, transformers, among others.12–14 Figure  1B 
illustrates the architecture of a U-Net used in medical appli-
cations to generate an output image from an input image after 
aggregating information at different scales. For more informa-
tion, we refer the readers to the recent reviews of deep learning 
in radiology.5,10,12,15

Machine learning approaches can be classified into four major 
categories depending on the nature of the problem being solved 
and the data elements used as part of the training, viz. supervised 
learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning. A model maps a set of inputs to given 
outputs in supervised learning and requires annotated data 

Figure 1. Schematic of a CNN architecture. (A) Traditional CNN architecture is used for image classification or regression. An input 
image is decomposed into multiple globally aggregated features by a final-stage fully connected neural network. Convolutional 
layers are the main component in CNNs. Additional layers include data pooling to downsample the image domain, drop-out 
for model simplification, and batch normalization. (B) U-Net architecture is a type of fully convolutional network that is widely 
employed in medical imaging applications. U-Net contains two convolutional steps: an encoder and a decoder. The encoder 
reduces the input data to a latent space, and the decoder uses this information to recreate a new image. Adapted from Chartrand 
et al and Zha et al10,11 with permission. CNN, convolutional neural network.
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sets. Unsupervised learning aims at finding structure in a data 
set, as it is common in clustering problems. Semi-supervised 
learning has emerged as an exciting approach that combines 
supervised and unsupervised techniques to take advantage of 
non-annotated datasets that can improve supervised learning 
by matching specific characteristics of the non-annotated data 
set. An example of semi-supervised learning is image-to-image 
translation using GANs.16 Finally, reinforcement learning is 
based on agents that learn from their environments through 
trial and error while optimizing some objective functions. An 
example of reinforming learning in medical imaging is landmark 
detection methods.17

Finally, machine learning approaches define the model param-
eters using training data to solve an optimization problem. The 
proper definition of the training data set in terms of character-
istics, sample size, and image conditions are key to converge to 
a solution that can be generalized to other data sets beyond the 
training examples. This implies that machine learning needs a 
thorough validation and testing of the models using data points 
that have been employed in training. Different techniques known 
as cross-validation are used to check the stability of the model 
when the training data change. It is essential to understand the 
conditions under which the model was derived, and the modelers 
need to follow good practices and careful documentation of the 
training process.18

AI IN FUNCTIONAL IMAGE RECONSTRUCTION
Magnetic resonance imaging (MRI)
MRI has been a primary modality in functional lung imaging 
because of its safety characteristics and the exceptional ability 
to discover functional properties.19 The early challenges due 
to a lack of protons and signal inhomogeneities in the lungs 
have been overcome, and now MRI can be used for static and 
dynamic lung imaging.20 The arrival of ultrashort TE (UTE) 
MRI with sophisticated clinical hardware has advanced lung 
imaging, both at the structural and functional levels.21 From 
oxygen-enhanced and hyperpolarized gases MRI for ventilation 
imaging21 to Fourier Decomposition proton MRI for ventila-
tion/perfusion (V/Q) imaging and dynamic contrast enhance-
ment (DCE) MRI for microvascular perfusion,19 MRI has 
become the modality of choice to examine the complex venti-
lation and perfusion functions in different pathological condi-
tions.22 Essential to MRI pulse sequence design is the need for 
short echo times and the balance between acquisition time and 
signal-to-noise ratio (SNR) that can be achieved with parallel 
imaging.23 Many of the computational approaches in MRI appli-
cations have been focused on improving optimal phase encoding 
from an under sampled version of the k-space that could reduce 
the acquisition time while keeping SNR levels compatible with 
image quality.24 Compressed sensing techniques were developed 
two decades ago for fast MRI reconstruction, and using diffusion 
MRI with hyperpolarized 129Xe.25,26 In the past few years, CNNs 
and Recurrent NNs have taken a prominent role in improving 
static and dynamic MRI reconstruction to learning the spatio-
temporal dependencies in heavily under  sampled k-space 
data.27–31 Duan et al32 showed improved ventilation imaging 
using a coarse-to-fine neural network from under  sampled 

k-space.32 Reconstruction can be achieved with higher SNR 
values than compressed sensing reconstruction, paving the way 
for real-time reconstruction of contrast-enhanced MRI of the 
lung. Unlike compressed sensing, CNN reconstruction models 
rely on incorporating prior information learned as part of the 
training process to solve the inverse reconstruction problem.33 
However, the reliance on data to define a model implies that 
rigorous validation is needed.34

Another area where deep learning can impact is the inherent 
need to perform motion correction in dynamic MRI acqui-
sitions. For example, Fourier Decomposition MRI for V/Q 
Imaging relies on registration techniques as a critical step in their 
reconstruction paradigm. Likewise, different approaches have 
been proposed based on traditional functional optimization that 
shows stable quality results.35 Deep learning registration offers 
an alternative with low computational cost during the inference 
stage once the registration model is trained.36,37 Deep learning 
in MRI also has been attempted to estimate quantitative tissue 
parameters using quantitative susceptibility mapping (QMS) and 
MRI fingerprinting to achieve more standardized biomarkers.38 
Although these techniques are yet to be applied in both preclin-
ical and clinical MRI lung imaging, deep learning could catalyze 
the translation of these advanced quantitative tools.

Computed tomography (CT)
Volumetric CT (VCT) has high-density contrast between air 
and tissue and is a mainstay of clinical chest radiology. The 
introduction of helical multislice CT scanning facilitated spatio-
temporal 4DCT as a tool in radiation oncology for measuring 
and managing overall respiratory motion.39 Patient safety is 
increased because only low dose radiation is required when 
combined with advanced iterative reconstruction techniques, 
and hence functional CT imaging (both 4D and dual-energy) 
is preferred for broader clinical use. Like MRI reconstruction, 
new AI methods are pushing ultra-low-dose CT image recon-
struction to another level. Major manufacturers are intro-
ducing new deep learning schemes that show higher SNR 
and contrast and improved object detectability than standard 
statistical or model-based iterative techniques.40–42 New tech-
niques under development and current iterative reconstruction 
approaches capable of denoising CNNs promise to improve the 
image SNR further.43 In addition to supporting low-dose image 
reconstruction, deep neural networks have also been employed 
to reduce breathing artifacts and enhance image quality.44 All 
these advances will make temporal ultra-low CT a safer and 
more versatile functional modality in clinical applications of 
CT.

Cone-beam CT (CBCT) system is becoming a key device in the 
interventional suite due to portability and high reconstruction 
quality for volumetric images. In addition, deep learning is cata-
lyzing dynamic applications with real-time reconstruction from 
sparse projection data permitting real-time ventilation imaging 
in image-guided radiotherapy.45,46 The combination of these 
improvements can open the door for these preclinical CBCT 
applications to broader adoption as a lung functional imaging 
modality.47
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Dual-energy CT scanning (DECT) with contrast agents (iodine 
or Xenon) has also enabled the assessment of regional ventila-
tion and perfusion by taking advantage of the difference in linear 
attenuation coefficient at different X-ray energies.48–52 CNNs are 
being applied to improve DECT imaging fundamentals related 
to material decomposition,53,54 simplify dual-energy acquisitions 
based on single-energy material decomposition55 and combine 
virtual single-energy structural imaging from dual-energy acqui-
sitions. The translation of these techniques can expand the role 
of DECT in ventilation and perfusion imaging as dual-energy is 
more readily available.

Positron emission tomography (PET-CT) and single-photon 
emission computed tomography (SPECT) have also been 
employed to perform V/Q imaging to improve planar lung scin-
tigraphy56 and assess pulmonary inflammation.57 Deep learning 
solutions are being developed to enhance PET reconstruction 
and attenuation correction58,59 ; however, up to date, no valida-
tion studies have been performed to show the impact of AI-en-
hanced molecular imaging in the lung. Thus, this area remains an 
exciting opportunity for AI in the years to come.

AI IN FUNCTIONAL QUANTIFICATION
Automated lung segmentation in functional 
modalities
For a functional imaging modality, it is important to define 
the structural components of the lung, such as lung field, lobar 
compartments, fissures, and the bronchovascular tree, to locate 
and quantitate image-based data. Deep learning is significantly 
evolving and transforming the post-acquisition upstream 
operations necessary to resolve the lung’s structural compo-
nents to interpret and quantify regional functional markers. 
Deep learning is indeed replacing the rule-based approaches 
to segment the lung60 and the lobes with more precise and reli-
able mapping methods based on CNNs that have shown more 
consistent results across modalities.6 In particular, the use of 
U-nets, a specialized neural network architecture for semantic 
segmentation, has provided compelling results in multiple 
medical and biomedical imaging segmentation tasks.61,62 These 
new approaches to image segmentation are superior in part 
due to their enhanced ability to encode shape priors of the 
segmented organ based on the provided training data without 
explicitly modeling the shape. One example of the application 
of U-Nets to functional modalities is the use of a 2D U-Net to 
perform volumetric lung segmentation from UTE proton MRI 
in a multiplane fashion.11 Despite reduced contrast around the 
lung boundaries, the lung volume estimates in a set of asthmatic 
and cystic fibrotic patients closely matched the reference values 
(Figure 2). One caveat for the application of deep learning is the 
limited availability of training data. Recently, Guo and colleagues 
showed increased robustness in UTE MRI lung segmentation by 
including an adaptive k-mean after the initial U-net segmenta-
tion.63 Robust lung segmentation in MRI is essential for quan-
titative analysis of functional parameters and its use in clinical 
studies. Similarly, a multi resolution U-Net architecture has been 
proposed for robust lobar segmentation in CT images to enable 
regional quantification of dynamic CT series.64,65

Deformable image registration (DIR)
Ventilation imaging. DIR is one of the most employed methods 
to assess ventilation defects from temporal imaging modalities 
like 4DCT, CBCT, and MRI. DIR-enabled CT-based ventilation 
assessment has been successfully used in radiation oncology to 
avoid damage from radiation therapy as well as performing dose–
response assessment.39 Recently, MRI-based mechanical assess-
ment of the lung via elastic registration has also been used to 
assess SSc-related fibrosis.66 Ventilation assessment using tissue 
expansion metrics based on the deformation fields generated by 
DIR or the differences in tissue density between the coregistered 
image pairs have shown reasonable correlation with the regional 
assessment of ventilation using Xenon CT48,67 and Xenon-MRI.68 
However, variability between registration approaches has led to 
a poor correlation between DIR-based ventilation metrics and 
reference modalities at the voxel level.69

Traditional DIR approaches describe the mapping of two 
images via a deformable field by finding the elastic transforma-
tion parameters that minimize the difference between images 
acquired at different moments during the respiratory cycle. 
Deformable registration in the lung has been challenging by the 
complexities of describing the transformation in a parametric 
way when dealing with large displacements commonly found 
in registration between images acquired between TLC and FRC 
while preserving known invariants like lung mass.70 Neverthe-
less, traditional methods have partially addressed lung registra-
tion with reasonable accuracy performance, albeit with complex 
methodologies that lack robustness and require long computa-
tion times due to the numerical minimization needed for each 
registration instance.71

Deep learning-based deformation image registration (DLDIR) 
has emerged in the last 5 years as a new paradigm for regis-
tration. One of the main advantages of DLDIR approaches is 
the explicit or implicit definition of the deformation field via a 
CNN that can better capture the complexities of the deforma-
tion in a particular problem with relatively low computational 
needs during the inference step. DLDIR can be classified into 
supervised and unsupervised registration methods. Supervised 
approaches that regress the displacement vector field between 
two images using a CNN model were initially employed in 
DLDIR72,73R These methods were trained with previously 
aligned images using either a reference method72 or synthetic 
deformations.73,74 Although these approaches improve the regis-
tration computing times from minutes to just a few seconds, 
their accuracy is defined by the characteristics of the reference 
approach used for learning. The reported registration errors on 
reference data sets are on par with their traditional techniques 
that have been extensively used in ventilation studies. Unsuper-
vised registration approaches have been explored to overcome 
the limitation of using an explicit reference deformation. Among 
them, unsupervised DLDIR has captured the attention in the last 
few years because it needs only limited training data.75 Unsu-
pervised techniques use a mismatch metric between the moving 
image and the reference image within the training data, as occurs 
in a traditional registration framework. A CNN model encodes 
the deformation parameters, and the optimization is done over 
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the parameters of the CNNs rather than the deformation param-
eters. Once the training is completed, the CNN is employed to 
generate new deformation parameters from unseen data sets. De 
Vos and colleagues37 pioneered this framework in lung regis-
tration using the multiscale ConvNet architecture (Figure 3). A 
similar approach has been shown to be feasible to register CT to 
CBCT and CBCT to CBCT76 and one-shot methods have been 
tailored to track periodic breathing motion patterns.77 Finally, 
Fu et al77 proposed a LungRegtNet for 4DCT registration that 
employs vascular landmarks to achieve superior performance 
compared to current methods based on unsupervised registra-
tion in the DIRLAb data set.78

The new breed of lung DLDIR approaches can lead to higher 
accuracy and more robust registration results that could improve 
the assessment of regional ventilation at the voxel level; however, 
extensive validation studies in larger prospective samples should 
be conducted to confirm this possibility.69,79 Inaccurate regis-
trations can result in lung tissue being mapped to blood vessel 
voxels which will cause artifacts in the CT-ventilation image in 
both the Jacobian and HU formulations. Without any doubt, 

the most exciting characteristic of DLDIR is the need for low 
computation to resolve a deformation field once the method has 
been trained. This opens the opportunity for bringing DIR-based 
ventilation metrics closer to the patient point-of-care when 
applied to lower-cost setups like 4D CBCT. These exciting tech-
niques are potential modalities for ventilation assessment during 
treatment in the near future.39

Multiparametric assessment. Registration is also a fundamental 
processing component of multiparametric structural and func-
tional imaging analyses to correlate structural changes with 
functional defects in lung pathophysiology.80–82 MacNeil et al83 
used volume-matched CT and hyperpolarized helium-3 (3He) 
MRI using static and diffusion-weighted imaging to define a 
multiparametric response map (mPRM). Structural changes 
measured on CT were coupled with regional MRI-based venti-
lation and microstructure based on the apparent diffusion coef-
ficient (ADC) as shown in Figure  4. mPRM metrics were able 
to reveal emphysema and small airways disease not otherwise 
identified with CT or MRI, reflecting the power of multimodal 
approaches in disease characterization. Registration approaches 

Figure 2. Segmentation of the lung field on oxygen-enhanced UTE MRI images using a multiplane (axial and coronal and final 
consensus) U-Net approach in a 37-year-old female with cystic fibrosis. The delineation of the lung boundaries can be achieved 
despite the reduced contrast. Adapted from Zha et al11 with permission. UTE, ultrashort TE.
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that include deep learning schemes will likely translate these 
upcoming multiparametric approaches to clinical applications 
beyond correlative studies.

Functional prediction
Deep learning approaches have been also postulated to predict 
the functional parameters from structural modalities. Westcott 
and colleagues showed how textural-based features extracted 
from a volume of interest on CT scans can predict regional venti-
latory effects in subjects with COPD.84 The method was trained 

with ventilation defect labels obtained from 1H and 3He MRI 
using a k-mean approach. Different classifiers were compared, 
and the most relevant features were selected in a cross-validation 
experimental setup. The AUC of the best model was 82%, 
with high specificity (91%) and moderate sensitivity (49%). 
Ventilation-defect percentage (VPD) predicted by the model 
and the one computed using the reference MRI modality show 
a strong correlation (90%); an encouraging sign of the ability of 
these approaches to offer patient-specific information on func-
tional impairment conditions. However, it is hard to ascertain 

Figure 3. An example of Unsupervised Deep Learning Deformable Image Registration from an expiratory (moving) to an inspira-
tory (fixed) CT scan. The CNN models the deformation field depicted as a warped grid. The Jacobian map estimates the volume 
change and can be used to compute ventilation maps. Registration inference can be performed in a few seconds in comparison to 
classical techniques enabling real-time deployment. Adapted from Vos BD de et al37 with permission. CNN, convolutional neural 
network.
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how stable the features proposed by this study could be gener-
alized to a larger COPD population with milder disease condi-
tions because of the limited sample size used for training. Larger 
sample size and reproducibility studies are needed to define the 
generalization power of the proposed features.

CNNs have also been used to extract features from CT images 
that can define spirometric status in smokers with and without 

COPD. Gonzalez et al85 used a three-layer feed-forward CNN 
to predict COPD functional status based on spirometry. The 
correlation between FEV1 measurements and deep learning 
CT-based measurements was 73%. Tang and colleagues used a 
more complex network—a residual Network with 152 layers—to 
diagnose COPD from CT volumetric imaging.86 The AUC in the 
testing cohort for the best model was 86%. This result was consis-
tent with the performance reported by Gonzalez and colleagues. 

Figure 4. Multiparametric imaging mapping from 3He MRI and CT in COPD. Functional and structural images (top) are aligned 
to produce a multiparametric Response Map (bottom). DL Registration techniques can enable accurate and real-time response 
mapping assessment. Adapted from MacNeil et al83 with permission. COPD, chronic obstructive pulmonary disease.
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These results suggest that different architectures can extract 
complementary feature information from CT imaging to predict 
an outcome.

In sum, the best network architecture design in terms of combi-
nations of neural layers must strike a trade-off between model 
complexity and the ability to generalize to different populations 
and imaging characteristics. Meta-learning techniques are being 
actively researched and developed to improve upon the predic-
tion of single learning techniques in multiple learning episodes 
that integrates different approaches.87

AI IN FUNCTIONAL ASSESSMENT
Function assessment is one of the most exciting emerging appli-
cations of AI where a direct functional response is synthesized to 
mimic a target functional modality, e.g. dual energy CT pulmo-
nary perfusion, from source modalities that require simpler or 
a more direct imaging reconstruction setup. These techniques 
aim to resolve intrinsic relations across functional modalities or 
even the resolution of functional information from structural 
modalities like CT. These approaches are referred to as image-
to-image translation within the AI community. They are based 
on an array of supervised and semi-supervised techniques that 
range from fully CNNs like convolutional generators based on 
autoencoders and U-nets61 to Generative Adversarial Networks 
(GAN)13 that combine a generator and a discriminator network. 
Image-to-image translation techniques were borne off in the 
context of computer graphics applications88 and one promi-
nent application is artificial style representation from natural 
images using paired (conditional) or unpaired (cycle) GANs.16,89 
In paired approaches, the training is performed in a data set 
containing paired instances of the target and source modality, 
while unpaired approaches can use instances from the source 
and the target modalities that are not matched or even belong to 
the same population of subjects.

Supervised functional synthesis
One of the first demonstrations of image translation approaches 
in functional lung images has been synthesizing ventilation 
imaging from 4DCT without explicit use of DIR. Unfortunately, 
4DCT-derived ventilation images are sensitive to the choice of 
DIR algorithm and its accuracy.90 Direct approaches can over-
come this limitation by directly learning tissue expansion char-
acteristics from multiple snapshots across a breathing cycle. 
Zhong et al91 proposed a fully convolutional model composed 
of seven layers without any downsampling step to preserve the 
image resolution. Despite reasonable results, fully convolutional 
networks are limited to local relations between the inspiratory 
and expiratory images around a voxel that could lead to inconsis-
tent results if the mismatch between inspiratory and expiratory 
images is significant.

To overcome some of the limitations of fully convolutional 
approaches, encoder–decoder convolutional like the U-net 
architecture have been extensively applied in image-to-image 
reconstruction tasks. The U-Net architecture includes multiple 
convolutional steps followed by a data down-sampling step in the 
encoder phase and up-sampling layers in the decoder phase. Also, 
information from the encoding phase at a given level is trans-
ferred to the decoder phase, similar to the fully convolutional 
approach. These architectures have shown promising results in 
synthesizing different functional ventilation images.92,93 Capaldi 
et al93 demonstrated the use of U-nets to estimate hyperpo-
larized noble gas MRI ventilation maps from free-breathing 
proton (1H) MRI after breathing phase sorting and interpola-
tion (Figure  5). Training, validation, and testing were done in 
a set of 114 subjects with different pulmonary conditions, i.e. 
asthma, COPD, bronchiectasis, and NSCLC, and healthy volun-
teers. The deep learning-based VDP estimation showed good 
agreement with reference values based on hyperpolarized 3He 
MRI. In a similar fashion to Zhong et al.,89 Gerard et al92 used 
a multi  resolution U-net to provide a direct estimation of the 

Figure 5. Deep learning ventilation MRI for the synthesis of 3He MRI ventilation imaging from free-breathing proton (1H) MRI. (A) 
Illustration of the MRI pipeline to register and sort out free-breathing MRI images before consumption by the image-to-image 
U-Net network. The training was performed to predict ventilation maps from 3He MRI. (B) Comparison between the reference 
ventilation maps and DL ventilation MRI synthetic imaging for subjects with different types of obstructive airway diseases. Agree-
ment in ventilation defect percentage between modalities was high with good correspondence. Adapted from Capaldi et al93 with 
permission.
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ventilation response based on the deformation Jacobian without 
a DIR (Figure  6A). Unlike prior approaches, this network was 
trained in an extensive database of inspiratory and expiratory CT 
scans from the COPDGene cohort and showed high voxel-wide 
correlations with ventilation images based on a classical mass-
preserving DIR approach.

Like ventilation imaging, recent studies have also shown the 
use of CNN approaches to estimate lung perfusion from single 
energy CT scans. Ren et al94 employed an attention U-net archi-
tecture to synthesize albumin SPECT/CT perfusion mapping 
from non-contrast CT scans to enable functional lung avoid-
ance in radiotherapy planning.94 Their proposed neural network 
is superior to the traditional U-Net architecture and is able to 
identify features from the CT domain that are compatible with 
perfusion defects with moderate correlation. Despite the limited 
size of the training (31 subjects) and testing data (11 subjects), 
these results illustrate the ability of deep learning approaches 
to estimate both ventilation and perfusion functional imaging 
from routine non-contrast CT scans under a common imaging 
platform.

Adversarial functional imaging
Semi-supervised approaches based on GANs are also under 
development as an improved alternative in image translation 
that aims at increasing the stability of the results of multi layered 
neural networks.15 For example, Nardelli et al95 illustrated the 
use of a modified conditional CycleGAN to synthesize dual-
energy-derived iodine perfusion maps from single energy 
contrast CT scans (Figure  6B). The cycleGAN leverages both 
CT imaging and structural vascular information in a setup with 

three encoding CNNs and three discriminators to generate the 
functional output with moderate local correlations (0.52 and 
0.66 in the core and peel lung regions, respectively). Although 
unpaired GAN approaches are more complex and more chal-
lenging to train due to the need to find an equilibrium point 
in a min-max optimization problem, they seem relevant to 
approximate the statistical characteristics of the image that is 
being estimated. Unpaired GAN approaches can be employed 
with larger databases of unpaired datasets to predict the target 
functional modality without the need for scanning the same 
subject with both modalities as required by plain convolutional 
approaches.93,94 Thus, the application of GANs presents a greater 
opportunity in the context of functional imaging. GAN-based 
learning can also be applied in various domains related to image 
reconstruction and preprocessing stages like super-resolution 
and multimodal registration and modality synthesis for multi-
parametric analysis.

Opportunities and challenges
AI applications in medical imaging have exploded over the past 
5 years, driven by multiple factors. First, the maturity of the deep 
learning approaches exploiting non-linear relations in the data 
has been instrumental. Second, advances in optimization and 
regularization techniques have made it tractable to fit models 
with a large number of parameters to a limited set of training 
data points. Third, the availability of methods in well-maintained 
open-source libraries has empowered a broad community with 
AI techniques, including non-experts in the field with limited 
skills. Finally, specialized computing architectures based on 
Graphics Processing Units (GPUs) have delivered the necessary 

Figure 6. Illustration of image-to-image translation techniques for synthetic ventilation and perfusion assessment based on single 
energy CT. (A) Direct Jacobian ventilation map estimation using a multi resolution deep learning approach without deformation 
image registration from inspiratory and expiratory CT scans. (B) Estimation of dual-energy perfusion maps from single energy CT 
angiograms to assess perfusion defects using a functional consistency CycleGAN.
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computing power to train advanced models within a reasonable 
amount of time.

While AI is still an emerging discipline in functional lung 
imaging, there are clear and tangible opportunities worth 
mentioning:

(1)	 Multifunctional assessment: AI has the potential to unleash 
the power of multiple functional assessments under a single 
imaging platform. Currently, ventilation and perfusion 
imaging require the use of different imaging contrast 
agents in CT. One potential integrated solution could be 
the emerging combination of 4D CBCT and simulated 
dual-energy imaging for functional imaging. The benefits 
of synthetic multifunctional assessment include reduced 
radiological tests that require hard-to-obtain radioactive 
contrast agents, reduced radiation exposure, and improved 
care delivery as imaging synthesis is performed without the 
patient as part of the radiological and clinical evaluation. 
However, realizing these opportunities will require an 
extensive validation process to define the interval confidence 
in which the synthetic images are consistent with the 
underlying functional ground truth. The outcome of the 
validation studies will also determine the potential of AI-
enabled synthetic imaging for clinical adoption and whether 
it could eventually be circumscribed to narrower clinical 
scenarios where an initial triage based on a sub  optimal 
approach might be useful.

(2)	 Clinical translation to low footprint radiological setups: 
current functional imaging relies on advanced modalities 
that require specialized equipment like hyperpolarizers. 
The potential use of AI-driven image-to-image translation 
could bring the benefit of functional information to standard 
radiological imaging modalities that are available in primary 
and secondary care facilities.

(3)	 Novel biomarkers: functional modalities provide 
voluminous multiparametric data that need to be 
laboriously synthesized into specific markers of disease. AI 
provides an alternative computational approach to define 
novel biomarkers of the disease. Supervised CNNs can be 
used to extract relevant image features that are associated 
with a specific outcome. Unsupervised autoencoder 
techniques can also be applied for dimensionality reduction 
to define novel biomarkers from multiparametric imaging 
sources.

(4)	 Unraveling lung structure and function: the relationship 
between structure and function of the lung has been well-
described, but we are still limited in linking the structural 
changes to the functional impairment and achieving a 
better characterization of the disease. Studies that combine 
structural and functional modalities83,96 can take advantage 
of AI as an exploratory tool to gain further insight into the 
structure–function relationship.

Despite the exciting and compelling preliminary evidence prom-
ising a more significant and elaborate role for AI in pulmonary 
functional imaging, several challenges remain that need to be 
carefully evaluated and resolved before realizing AI as a reliable 
component of clinical functional lung imaging:

(1)	 Validation: data-driven approaches require rigorous 
validation studies to gauge the generality and robustness of 
the methods. Until now, most of the studies that apply AI to 
functional lung imaging were performed with small datasets. 
Although they provide early evidence of what AI can do, 
they lack the rigor needed to qualify as bonafide approaches. 
Large databases on diverse populations will be required to 
train and validate the techniques before translating them 
into clinical use.

(2)	 Model transparency: one of the major criticisms of deep 
learning is a lack of transparency and interpretability. In 
other words, users (clinicians and researchers) should be 
able to understand the “reasoning” of the AI model; why it 
renders one verdict and not the other. Model developers and 
data scientists must make didactic efforts to teach the users 
how the models operate and decide outcomes. Transparency 
is crucial to defining a modality’s operational realm and 
proactively restricting deviations from the model that can 
affect image quality and diagnostic interpretability.

(3)	 Model robustness: one collateral effect of the lack of model 
transparency is model instability to adversarial attacks 
(negligible input variations resulting in significant changes 
of the model output) and intrinsic model biases. Adversarial 
attack prevention is an oft-discussed topic in AI and they 
pose a substantial barrier to the use of AI for image synthesis 
in critical applications like diagnostic imaging.97 Careful 
model design and training considerations must be taken to 
avoid adversarial attacks overall if models are trained with 
off-the-shelve components.98 In a similar fashion, biases and 
disparity in functional expression may be translated into AI 
systems trained with imaging data in which those underlying 
biases exist.99 Understanding the specific performance 
characteristics of each model is crucial to move beyond the 
preclinical scenario and successfully introduce it into clinical 
practice.

(4)	 Unlocking data silos: the unresolved complexities of 
functional imaging imply that the number of training 
cases is limited compared to training scenarios available 
for modalities like CT and CXR. Training sample size is 
a key factor in deep learning that depends on the specific 
characteristics of the problem begin addressed and the model 
that is used. Unlocking the available data silos is paramount 
for implementing new data-driven advances in functional 
lung imaging. Open data repositories and challenges like 
VAMPIRE79 are crucial for developing machine learning-
centric approaches that improve functional lung imaging 
quality and performance reasonably and reproducibly. Issues 
about data integrity and privacy could be overcome with 
federated solutions that enable de-centralized AI modeling 
to exploit pan-institutional datasets.100,101

CONCLUSION
AI continues to evolve rapidly and push the limits in many 
spheres, and its interest in medicine is growing exponentially 
in recent years, especially in the functional imaging domain. 
Public and private entities recognize this as a thrust area, and 
their initiatives have begun to catalyze this field.100 The pulmo-
nary functional imaging community can benefit from this 
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frenetic activity in data science as novel approaches using rich 
data sets are proposed to redefine disease conditions. Machine 
learning models that link imaging, functional, biomarkers, and 
multi omics data can advance our understanding of the complex 
and intimate connection between structure and function.102 
AI can also play a transformative role in adopting functional 
imaging approaches to clinical settings that are now restricted 
to preclinical scenarios due to their complexity. The use of func-
tional modalities in diseases like chronic obstructive pulmonary 
disease (COPD), asthma, Interstital Lung Disease (ILD), or Cystic 
Fibrosis (CF) can bring a new dimensionality to define relevant 
markers of disease heterogeneity and progression.82,103,104 At the 
same time, the application of AI is not free of limitations and 
perils stemming from the experimental nature of current tech-
niques. The reliance on vast amounts of data exemplars rather 
than well-understood “fixed” models could act as a double-edged 
sword if AI is applied without careful methodological consid-
eration. This issue is even more relevant in functional imaging 
scenarios where functional metrics describe subtle pathophys-
iological processes that need to be well-understood by the AI 

developers. Therefore, a multidisciplinary approach is essential 
to introduce AI in functional pulmonary imaging. Successful 
incorporation of AI in functional imaging holds promise to 
transform the field, delivering significant benefits in the coming 
years.
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INTRODUCTION
In recent years, lung cancer has become the number one 
cause of death in several countries. The American National 
Lung Screening Trial (NLST) has demonstrated that 
compared with screening using chest X-rays, using low-
dose CT (LDCT) has led to 20% reduction in lung cancer 
mortality by screening heavy smokers.1,2 CT has replaced 
conventional chest radiographs as the preferred method 
for chest examination. Thus, disease can be controlled or 
treated in its asymptomatic state.3 However, compared to 
chest X-ray, patients may receive 10–100 times of radia-
tion dose when a standard-dose chest CT scan is used. The 
potential risk of radiation-induced malignancy related to the 
burgeoning use of CT and radiation exposure has attracted 
a lot of attention.2 In CT examination, the radiation dose 
delivered to the patients is a public health concern.4 The 

radiation related risk may be increasing due to the increase 
of CT examination. Low-dose chest CT is considered as a 
screening method for early detection of lung cancer in the 
population at risk.5 So low-dose chest CT scan has been 
used more frequently than the standard-dose chest CT 
in clinical application in the early lung cancer screening,6 
and reducing the radiation dose while maintaining or 
improving image quality is a goal many people have been 
pursuing. Filtered back projection (FBP) was the standard 
reconstruction for CT which has the fastest image recon-
struction time. However, when images are reconstructed 
using conventional FBP under low-dose scan conditions, 
high image noise and artifacts cannot be ignored.7,8 Iter-
ative reconstruction techniques have been introduced that 
can significantly reduce the image noise and provide more 
possibilities for reducing the radiation dose, compared with 
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Objective: Deep learning image reconstruction (DLIR) 
is a new reconstruction method for maintaining image 
quality at reduced radiation dose. The purpose of this 
study was to compare image quality of reduced-dose 
DLIR images with the standard-dose adaptive statistical 
iterative reconstruction (ASIR-V) images in chest CT.
Methods: Our prospective study included 48 adult 
patients (30 women and 18 men, mean age ±SD, 49.8 ± 
14.3 years) who underwent both the standard-dose CT 
(SDCT) and low-dose CT (LDCT) on a GE Revolution CT 
scanner. All patients gave written informed consent. All 
scans were reconstructed with ASIR-V40%. Additionally, 
LDCT scans were reconstructed with DLIR with high-
setting (DLIR-H) and medium-setting (DLIR-M). Image 
noise and contrast-noise-ratio (CNR) of thoracic aorta 
with different reconstruction modes were measured and 
compared.
Results: LDCT reduced radiation dose by 96% compared 
with SDCT (CTDIvol: 0.54mGy vs 12.46mGy). In LDCT, 
DLIR significantly reduced image noise compared with 

the state-of-the-art ASIR-V40% with DLIR-H provided 
the lowest image noise and highest image quality score. 
In addition, the image noise, CNR of aorta and overall 
image quality of the low-dose DLIR-H images did not 
have significant difference compared with the SDCT 
ASIR-V40% images (all p > 0.05).
Conclusion: DLIR significantly reduces image noise in 
LDCT chest scans and provides similar image quality as 
the SDCT ASIR-V images at 4% of the radiation dose.
Advances in knowledge: DLIR uses high-quality FBP 
data to train deep neural networks to learn how to 
distinguish between signal and noise, and effectively 
suppresses noise without affecting anatomical and 
pathological structures. It opens a new era of CT image 
reconstruction. DLIR significantly reduces image noise 
and improves image quality compared with ASIR-V40% 
under same radiation dose condition. DLIR-H achieves 
similar image quality at 4% radiation dose as ASIR-V40% 
at standard-dose level in non-contrast chest CT.
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the FBP reconstruction.6 The adaptive statistical iterative recon-
struction (ASIR-V) is a new generation iterative reconstruction 
algorithm that has advantages of further improving image quality 
and/or reducing radiation dose compared with its predecessor.8 
However, in general, iterative reconstructions at high levels may 
cause a plastic-looking, blotchy, and unnatural image appearance 
that will eventually reduce the image quality and affect clinicians’ 
diagnosis of diseases, limiting the ability for deep radiation dose 
reduction.

Recently, a deep learning image reconstruction (DLIR) algorithm 
(TrueFidelityTM, GE Healthcare Waukesha, WI) has been intro-
duced to address some of the unsolved difficult scientific and 
technical problems of iterative reconstruction algorithms. DLIR 
is a CT image reconstruction method applied with a deep convo-
lutional neural network (DCNN) to improve image quality.9 
DLIR uses highly selected, essentially artifact-free FBP image 
sets of both phantoms and patients to train the software and has 
been shown to improve image quality or maintain image quality 
under lower radiation doses in the abdominal and coronary CT 
applications.2,10 The purpose of our study was to evaluate image 
quality in terms of image noise, contrast-to-noise ratio (CNR) of 
DLIR chest CT images under an extremely low-dose scan condi-
tion and compare with those of ASIR-V40% images under both 
standard- and low-dose conditions.

METHODS AND MATERIALS
Study population
This was a prospective study approved by the internal review 
board of our hospital and all patients gave written informed 
consent for participating the study. From May 10 to September 
28, 2020, 49 consecutive patients (18 men, 31 women; with mean 
age ± standard deviation of 49.8 ± 14.3 years; body mass index 
(BMI) of 18.5–24.0 kg/m2) underwent an extremely LDCT scan 
of the chest after a clinically indicated standard-dose CT (SDCT). 
One patient was later excluded from analysis due to motion arti-
facts. Thus, 48 patients (18 men, 30 women) were finally included 
in this study.

Scan technology and image acquisition
All patients were scanned on a 256-slice CT scanner (Revolution 
CT, GE Healthcare) while in supine position with arms raised 
overhead to prevent artifacts. All patients were instructed to 
avoid any voluntary motion and to carefully follow the breath-
hold instructions. The standard- and low-dose scan protocols 
were used in an inspiratory breath-hold cycle to ensure that 
the lesions were in the same position in both scans. The scan 
parameters were as follows: (1), standard-dose scanning: voltage, 
120 kV; and automatic tube current; gantry rotation time, 0.5 s; 
helical pitch, 0.992:1. (2), low dose scanning: voltage, 80 kV; 
tube current, 50mA; gantry rotation time, 0.5 s; helical pitch, 
0.992:1. Both LDCT and SDCT images were reconstructed at a 
slice thickness of 1.25 mm and with ASIR-V at a strength level of 
40% (ASIR-V40%). In addition, the LDCT scan data sets were 
reconstructed with DLIR at the medium (DLIR-M) and high 
(DLIR-H) levels.

To assess the radiation dose, the volume CT dose index (CTDIvol) 
and dose–length product (DLP) were recorded for the SDCT 

and LDCT imaging series. The estimated effective dose (ED) was 
calculated as DLP multiplied by a k-factor of 0.014 mSv·mGy–

1·cm–1 for the chest.

Objective image analysis
All reconstructed (ASIR-V40%@LDCT, ASIR-V40%@SDCT, 
DLIR-M@LDCT, DLIR-H@LDCT) images were transmitted to 
a GE AW 4.7 workstation for data measurement and image anal-
ysis. Images were reviewed in both a lung setting (window level, 
–600 HU; window width, 1500 HU) and mediastinal setting 
(window level, 40 HU; window width, 350 HU). One radiol-
ogist with 3 years of working experience in medical imaging 
performed an objective image analysis on the axial images. The 
reconstructions were linked so that identical region of interest 
(ROI) could be drawn in the same location on each reconstruc-
tion. Three ROIs with area of 150 mm2 were drawn in the aorta, 
paraspinal musculature, and subcutaneous fat. For each recon-
struction, the contrast-to-noise ratio (CNR) relative to muscle 
was calculated for the aorta as (ROIi – ROIm) / SD, where ROIi is 
the mean attenuation for the anatomy of interest (aorta), ROIm is 
the mean attenuation of paraspinal muscles, and SD is the mean 
image noise based on the measurement for subcutaneous fat, 
calculated as the mean SD of attenuation in HUs. These measure-
ments were performed in all four reconstruction modes.2

Subjective image analysis
Two other radiologists with more than 10 years of experience 
in medical imaging, separately performed the lesion identifica-
tion and objective image analysis of the reconstructed images. 
The patients’ information and the image reconstruction modes 
were hidden. The radiologists were blinded to the patients’ data 
and image reconstruction techniques. A 5-point scoring system 
for subjective evaluation of image quality,6 including aspects of 
morphological display, visibility for surrounding lung tissue and 
diagnostic confidence for lung lesions (including solid nodules 
and ground-glass nodules) was used (Table 1).

Statistical analysis
Data were recorded in Excel (Microsoft Office 2016) and analyzed 
with SPSS statistical software (v. 22.0, IBM SPSS Statistics). The 
objective data were expressed as mean ± SD. Radiation dose 
between LDCT and SDCT was compared using the Student’s t-
test. The differences among the CT images reconstructed with 
ASIR-V40% (with LDCT and SDCT data), DLIR-M, DLIR-H 
(with LDCT data) were evaluated. The one-way ANOVA with 
Bonferroni Correction was used to compare the quantitative CT 
measurements and the Kruskal–Wallis Wilcoxon rank sum test 
and Dunnett’ t-test was used to compare image quality across the 
different dose levels and different reconstruction techniques for 
chest CT. For the subjective analysis, we calculated the interob-
server agreement using the κ statistic to evaluate the agreement 
between the two readers. A p-value of less than 0.05 was consid-
ered statistically significant.

RESULTS
Basic information of patients and radiation dose
A total of 48 patients (18 men, 30 women) were finally included 
in this study. A total of 97 solid nodules and 30 ground-glass 

http://birpublications.org/bjr


3 of 7 birpublications.org/bjr Br J Radiol;95:20210380

BJRDeep Learning Image Reconstruction in low-dose chest CT scan

nodules were identified in the study in SDCT. There was no 
significant difference in the detection rate of nodules between 
the SDCT, LDCT, DLIR-M and DLIR-H. The difference was in 
the appearance of the nodules.

From the images, the average X-ray tube current of SDCT was 
413.78 ± 4.81 mA. As for the radiation dosage, the mean CTDIvol, 
DLP, ED were 12.46 ± 1.16 mGy, 447.32 ± 34.51mGy*cm, 6.26 ± 
0.48 mSv in SDCT and 0.54 ± 0.00 mGy, 19.44 ± 1.37mGy*cm, 
0.27 ± 0.20 mSv in LDCT, respectively with about 96% dose 
reduction in LDCT (all p < 0.001) (Table 2).

Objective analysis
The objective image analysis results are presented in Table  3. 
The image signals (CT number) were conformed to normal 
distribution and did not have significantly difference across 
different reconstructions (p = 0.2). But the other parameters, 
including image noise (SD), and CNR, differed significantly. 
For image noise, the SD value did not have significantly differ-
ence between ASIR-V40%@SDCT and DLIR-H@LDCT (p = 
1.000), while the differences between any other reconstruction 
pairs were all statistically significant (DLIR-M@LDCT vs ASIR-
V40%@LDCT, p = 0.006 and ASIR-V40%@SDCT vs DLIR-M@
LDCT, ASIR-V40%@SDCT vs ASIR-V40%@LDCT, DLIR-H@
LDCT vs DLIR-M@LDCT, DLIR-H@LDCT vs ASIR-V40%@
LDCT, all p < 0.001 (Figure 1)). The CNR for the aorta did not 
have statistically significant difference between ASIR-V40%@
SDCT and DLIR-H@LDCT, (p = 1.000), DLIR-M@LDCT and 
ASIR-V40%@LDCT, (p = 0.625), and ASIR-V40%@SDCT 
and DLIR-M@LDCT, (p = 0.163), and DLIR-H@LDCT and 
DLIR-M@LDCT, (p = 0.181); while there was statistically signif-
icant difference between ASIR-V40%@SDCT and ASIR-V40%@

LDCT and between DLIR-H@LDCT and ASIR-V40%@LDCT 
(all p < 0.05).

Subjective analysis
The subjective analysis is summarized in Tables  4 and 5 and 
Figure  2 . The results showed that, There was no significant 
difference in the detection rate of nodules among the different 
reconstructions. The difference was in the appearance of the 
nodules.The DLIR images had a better quality than the ASIR-
V40% at LDCT. Moreover, compared with SDCT, DLIR-H 
images at LDCT had similar image quality for evaluating the 
nodules in terms of morphological display of nodules, visibility 
for surrounding lung tissue, artifacts, and diagnostic confidence 
(Tables 4 and 5). There was substantial agreement between the 
two readers (Kappa>0.7).

DISCUSSION
During the history of CT development, people have made unre-
mitting efforts to reduce radiation dose while maintaining the 
image quality and diagnostic accuracy. FBP was the standard 
reconstruction for CT. However, with the decrease of radiation 
dose, image quality was greatly affected, prominent noise and 
artifacts occurred.11 Then, several methods of maintaining image 
quality while reducing radiation dose were introduced in succes-
sion, such as IR, model-based IR (MBIR), ASIR and ASIR–V (GE 
Healthcare).12 IR techniques have been introduced to reduce 
image noise or maintain good CT image quality on reduced-
dose CT scans. ASIR (GE Healthcare) was the first commer-
cially available IR algorithm.13 One can choose the percentages 
of blending IR with FBP to obtain the desired balance between 
noise reduction, spatial resolution and image appearance for 
clinical application, and is a major advance in the development 

Table 1. Subjective score criteria for image quality evaluation

Grading 
score Qualitative image analysis

Morphological display of all nodules Visibility for surrounding lung tissue Artifacts and diagnostic confidence

1 Very poor display, unclear edge Unacceptable visibility, cannot distinguish 
small structures

Severe artifacts, insufficient confidence

2 Poor display, fuzzy edge Small structures are not displayed very well, 
seriously impact diagnosis

Substantial artifacts, insufficient confidence

3 Moderate display, not very clear edge Small structures can be displayed, and 
enough for diagnosis

Moderate artifacts, low confidence but 
diagnosis possible

4 Better display, still clear edge Small structures can be clearly displayed 
with good contrast

Minor artifacts, good diagnostic confidence

5 Excellent display, clear edge Small structures can be clearly displayed 
with excellent contrast

No artifacts, excellent diagnostic confidence

Table 2. Comparison of radiation dose between the two scanning modes

CTDIvol (mGy） DLP (mGy.cm) ED (mSv)
Standard-dose scan 12.46±1.16 447.32±34.51 6.26±0.48

Low-dose scan 0.54±0.00 19.44±1.37 0.27±0.20

p <0.001 <0.001 <0.001

CTDIvol, volume CT dose index; DLP, dose–length product; ED, effective dose.
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of reconstruction technology.11 MBIR is a more advanced iter-
ative algorithm than ASIR, using both backward and forward 
projections. MBIR can reduce image noise more effectively than 
ASIR, through many complex models, such as system noise 
model, object model, physics model. Recent studies have shown 
that MBIR allows significant reduction of radiation dose without 
affecting image quality and has the potential to further increase 
the detection rate of some subtle lesions at the expense of longer 
reconstruction time.14 ASIR-V is the vendor’s third-generation 
IR algorithm, and replaces its first-generation IR algorithm, 
ASIR. ASIR-V contains improved noise and object modeling 
compared with ASIR. But the image noise reduction potential 
of ASIR-V is lower than that of the MBIR. However, compared 
with MBIR, the reconstruction time of ASIR-V is substantially 
reduced, which is one of the major limitations for clinical use of 
MBIR.15 Deep learning is a subset of machine learning in arti-
ficial intelligence. In general, deep learning consists of massive 
multilayer networks of artificial neurons. And, the deep convo-
lutional neural networks (DCNN) method, is commonly used 
in image recognition.16 The DCNN is trained with virtual low- 
and high-quality images, the former is obtained with LDCT and Ta

b
le

 3
. 

C
o

m
p

ar
is

o
n 

o
f 

q
ua

nt
it

at
iv

e 
m

ea
su

re
m

en
ts

 a
m

o
ng

 A
S

IR
-V

 a
nd

 D
LI

R
 u

nd
er

 d
iff

er
en

t 
ra

d
ia

ti
o

n 
d

o
se

s

Va
ri

ab
le

s
SD

C
T

LD
C

T
D

LI
R-

M
D

LI
R-

H

p

P
SD

C
T 
vs

 
D

LI
R-

H
SD

C
T 
vs

 
D

LI
R-

M
SD

C
T 
vs

 
LD

C
T

D
LI

R-
H

 v
s 

D
LI

R-
M

D
LI

R-
H

 v
s 

LD
C

T
D

LI
R-

M
 v
s 

LD
C

T
Im

ag
e 

no
is

e
12

.4
 ±

 2
.1

28
.6

 ±
 3

.9
20

.4
 ±

 2
.6

12
.5

 ±
 7

.2
<0

.0
01

1.
00

0
<0

.0
01

<0
.0

01
<0

.0
01

<0
.0

01
0.

00
6

C
N

R
 a

or
ta

0.
9 

± 
0.

6
0.

4 
± 

0.
3

0.
6 

± 
0.

5
0.

9 
± 

0.
7

<0
.0

01
1.

00
0

0.
16

3
0.

00
4

0.
18

1
0.

00
7

0.
62

5

Im
ag

e 
si

gn
al

46
.9

 ±
 6

.6
49

.0
 ±

 9
.5

50
.2

 ±
 8

.9
50

.4
 ±

 8
.0

0.
2

0.
09

8
0.

12
4

0.
32

5
0.

90
5

0.
49

7
0.

57
6

A
S

IR
, a

d
ap

ti
ve

 s
ta

ti
st

ic
al

 it
er

at
iv

e 
re

co
ns

tr
uc

ti
o

n;
 D

LI
R

, d
ee

p
 le

ar
ni

ng
 im

ag
e 

re
co

ns
tr

uc
ti

o
n;

 D
LI

R
-H

: D
LI

R
-H

 w
it

h 
lo

w
-d

o
se

; D
LI

R
-M

: D
LI

R
-M

 w
it

h 
lo

w
-d

o
se

; L
D

C
T:

 A
S

IR
-V

4
0

%
 w

it
h 

lo
w

-d
o

se
;L

D
C

T,
 

lo
w

-d
o

se
 C

T;
 S

D
C

T,
 s

ta
nd

ar
d

-d
o

se
 C

T;
 S

D
C

T:
 A

S
IR

-V
4

0
%

 w
it

h 
st

an
d

ar
d

-d
o

se
.

Figure 1. Comparison of chest CT scan in axial soft tissue 
window images of mediastinum in 43-year-old male (A), 
ASIR-V40% at SDCT; (B), ASIR-V40% at LDCT; (C), DLIR-M at 
LDCT; and (D), DLIR-H at LDCT. In different reconstructions, 
the image attenuation values (CT numbers) did not have 
statistically significant difference. For image noise, the SD 
value did not have significantly difference between SDCT and 
DLIR-H (p = 1.000), while there were statistically significant 
differences between any other reconstruction pairs: DLIR-M 
vs LDCT, p = 0.006, and SDCT vs DLIR-M, SDCT vs LDCT, 
DLIR-H vs DL-M, DLIR-H vs LDCT, all p < 0.001. ASIR, adaptive 
statistical iterative reconstruction; DLIR, deep learning image 
reconstruction; LDCT, low-dose CT; SDCT, standard-dose CT; 
SD, standard deviation.
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the latter with SDCT. Compared with conventional machine 
learning methods, a distinctive feature of deep learning is that it 
can generate appropriate models for tasks directly from the raw 
data, removing the need for human-led feature extraction, and 
images reconstructed with DLIR have the property of reduced 
image noise without blurring.17,18 The DLIR technique assessed 
in our study represents a major advancement in the pursuit of CT 
radiation dose optimization. Studies have shown that compared 
with both conventional FBP and IR techniques, DLIR-based 
images delivered better qualitative and quantitative image quality 
while enabling superior lesion detection ability on chest LDCT19 
and that deep learning approaches offer the exciting potential 
to more complex image analysis, detect subtle holistic imaging 
findings and unify methodologies for image evaluation.20

In our study, we assessed the use of 80 kV and 50 mA for a low-
dose chest CT, which reduced radiation dose by 96% compared 
with the SDCT. We evaluated the image quality of DLIR chest 
CT images under such a low-dose scan condition and compared 
with that of ASIR-V40% images under both the standard- and 
low-dose conditions. Our study demonstrated that, the attenu-
ation values (CT numbers) in images had no significant differ-
ence among different reconstructions (SDCT, LDCT, DLIR-M 
and DLIR-H); However, under the same low-dose condition, 
DLIR significantly reduced image noise, resulting in higher CNR 
compared with ASIR-V40%; In addition, DLIR at the 4% radia-
tion dose level provided similar image quality as ASIR-V40% at 
the standard dose level.

Our study also indicated that although all lesions could be 
displayed in all the reconstructions studied, the overall image 
quality, lesion diagnostic confidence, artifacts, image noise and 
texture and the details of the lesion among the different image 
reconstructions varied greatly. DLIR showed improved image 
quality compared to ASIR-V40% in low-dose chest CT scans. For 
the images at LDCT, the lesion diagnostic confidence was signifi-
cantly higher with DLIR-H than with ASIR-V40% or DLIR-M. 
There was no significant difference in lesion diagnostic confi-
dence between ASIR-V40% at SDCT and DLIR-H at LDCT for 
solid nodules (p = 0.43) and for ground-glass nodules (p = 0.34). 
While there were statistically significant differences between any 
other reconstruction pairs: DLIR-M@LDCT vs ASIR-V40%@
LDCT; ASIR-V40%@SDCT vs DLIR-M@LDCT; ASIR-V40%@
SDCT vs ASIR-V40%@LDCT; DLIR-H@LDCT vs DLIR-M@
LDCT; and DLIR-H@LDCT vs ASIR-V40%@LDCT, all p < 0.05.

There were limitations in our study. We used a lower tube voltage 
(at 80 kVp) in LDCT than the 120 kVp in SDCT to dramatically 
reduce radiation dose. In the future, we plan to investigate the 
dose saving and image quality improvement potential using the 
same tube voltage to reduce variables. Another limitation of 
our study pertains to the fact that we only had small number 
of patients and we only included non-contrast chest CT exam-
inations. Studies with more patients and contrast-enhanced 
CT scans need to be carried out in the future to generalize our 
conclusion.

CONCLUSIONS
In summary, DLIR significantly reduces image noise in low-dose 
chest CT scans and DLIR-H provides similar image quality as the 
SDCT ASIR-V40% images with only 4% of the radiation dose.

Figure 2. Comparison of chest CT scan in axial soft tissue 
window images of lung in 42-year-old male. Images were (A), 
ASIR-V40% at SDCT; (B), ASIR-V40% at LDCT; (C), DLIR-M 
at LDCT; and (D), DLIR-H at LDCT. There was no significant 
difference in the detection rate of nodules among the differ-
ent reconstructions. The difference was in the appearance of 
the nodules. ASIR, adaptive statistical iterative reconstruction; 
DLIR, deep learning image reconstruction; LDCT, low-dose 
CT; SDCT, standard-dose CT; SD, standard deviation.
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Introduction
Lung cancer is the leading cause of cancer death world-
wide. Its 5-year survival rate after diagnosis is merely 
15.6%, despite the advances in surgical, medical and 
radio-therapeutic treatments.1 In other words, lung 
cancer has a good prognosis only if detected at a very 
early tumour stage. Recently, American National Lung 
Screening Trial (NLST) has suggested that as compared 
with chest radiography, low-dose CT (LDCT) screening 
exhibited more sensitivity in early-stage lung cancer 
detecting and may contribute to a reduction in mortality 
from lung cancer,2,3 which indicates that LDCT has the 
potential to be widely used in lung cancer screening. 
However, the LDCT scans performed in NLST involves 
an approximate dose of 2 mSv, whereas the full-dose 
chest CT scans, used for nodules follow-up in the major 
diagnostic, may involve a dose up to 8 mSv, which may 
present an independent risk of lung cancer and remains a 

concern of CT lung screening.4 Thus, it is valuable to find 
an approach that can further reduce radiation dose in CT 
scans meanwhile maintaining the image quality and diag-
nostic accuracy.

With the development of CT techniques, iterative recon-
struction (IR) algorithms were introduced to help reduce 
the quantum noise associated with the filtered back projec-
tion (FBP) algorithm thus to offer better image quality 
with less radiation dose;5–7 however, most of the commer-
cially available and widely used IR techniques are hybrid 
iterative  reconstruction (HIR) algorithms which have 
been reported with certain limits in image noise and arte-
facts suppression.8 In recent years, a new model-based 
IR algorithm, iterative model reconstruction (IMR), has 
been reported to enable further dose reduction and image 
quality improvement in chest CT.9 Thus, we assumed that 
IMR has the potential to help for further dose reduction in 
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Objective: To investigate the image quality and nodules 
detectability using ultra-low dose (ULD) protocol with 
iterative model reconstruction (IMR) algorithm when 
compared to routine low dose (LD) chest CT in lung 
cancer screening.
Methods: Chest CT scans were acquired using a 256-slice 
scanner for 300 subjects. The scan protocol for the ULD 
group was 120 kVp/17 mAs while for the LD group was 
120  kVp/30  mAs. All images were reconstructed with 
filtered back projection (FBP), hybrid iterative recon-
struction (HIR) and IMR algorithms. Effective dose was 
recorded. Image quality assessments were performed 
by two radiologists. SD of CT attenuation was measured 
as objective image noise. The number of non-calcified 
nodules detected in both groups with different recon-
struction algorithms were calculated and compared.

Results: The effective  dose of ULD group (0.67 ± 
0.08 mSv) was about 44% reduced compared with LD 
group (1.20 ± 0.08 mSv) (p < 0.01). IMR improved image 
quality and reduced image noise significantly than HIR 
and FBP in both groups (all, p < 0.01). IMR enabled a 
higher number of nodule detected compared to FBP 
and HIR in both LD and ULD groups, especially for solid 
nodules less than 4 mm.
Conclusion: IMR may improve the diagnostic accuracy 
of ULD CT lung screening with potential nodule detect-
ability improvement.
Advances in knowledge: IMR enables significant 
reduction of the image noise and improvement of 
image quality in sub-mSv (66% reduction) chest  
scans.
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LDCT scans used for lung cancer screening, and designed this 
study to investigate the image quality and nodule detectability 
of the ultra-low dose (ULD)-CT scans with IMR algorithm by 
comparing with the routine LDCT scans with FBP and HIR algo-
rithms, to determine whether ULD-CT scans with the use of IMR 
could achieve diagnostic acceptable in lung cancer screening.

Methods and Materials
Study design and population
This prospective study received institutional review board 
approval; prior informed consent was obtained from all patients. 
We prospectively enrolled 300 consecutive patients who under-
went chest CT during a 4-week period in July and August 2013. 
All had suspected or confirmed risk of lung cancer. The inclu-
sion criteria were (1) at the age of 40 to 74; (2) Smokers with 
a smoking history of more than 10 pack-years, including those 
who had quitted smoking but not more than 10 years; (3) Passive 
smokers; (4) Occupationally exposed to asbestos, beryllium, 
uranium and radon. Exclusion criteria included (1) confirmed 
histologic diagnosis of lung cancer; (2) had previous surgery or 
radiotherapy in chest; (3) with current respiratory symptoms; (4) 
pregnancy or lactation status; (5) severe chronic life-threatening 
disease with a life expectancy less than 6 monthsand (6) body 
mass index (BMI) larger than 30 kg m–2.

In the first 2 weeks, 150 patients underwent chest CT using routine 
low dose protocols (LD-group); 20 of them were excluded due 

to large BMI and previous surgery in chest and severe chronic 
disease. In the second 2 weeks, 150 patients underwent CT using 
a further reduced radiation dose protocol (ULD group) and 11 
of them were excluded due to BMI over 30 kg m–2 and severe 
chronic disease.

CT acquisition and image reconstruction
All CT examinations were performed on a 256-slice CT scanner 
(Brilliance iCT; Philips Healthcare, Cleveland, OH). The data 
acquisition parameters were as follows: detector configura-
tion, 128 × 0.625 mm; beam pitch, 0.99; rotation time, 0.5 s; 
field of view, 350 mm; slice thickness, 1.0 mm; slice increment, 
0.5 mm, matrix 512*512; tube voltage, 120 kVp; tube current time 
products, 30 mAs for LD group and 17 mAs for ULD group. Both 
raw data from LD and ULD groups were reconstructed with FBP, 
HIR  (iDose4, Level 4,  Philips Healthcare, Cleveland,  OH)  and 
IMR algorithms, respectively, using identical parameters of 1.0 
mm thickness at 0.5 mm increment, and a sharp reconstruction 
filter (Y-sharp) for lung structures as well as a standard recon-
struction filter (B) for mediastinum structures.

Image quality assessment
All images were reviewed and interpreted on a commercially 
available workstation (Intellispace portal 5.0, Philips Health-
care, Cleveland, OH). Objective image assessment was performed 
in lung window as follows: A 200 mm2region of interest was 
placed within the ascending aorta, the CT value (in Hounsfield 
units) of the region of interest was recorded and its SD was used 
as image noise. Measurements were performed three times and 
expressed as the mean value. On the other hand, two thoracic 
radiologists who were not aware of any image reconstruction 
settings with 3 and 7 years of experience were asked to perform 
subjective image assessment independently. Images were 
displayed in the lung window setting (window width, 1400 HU; 
window level, −450 HU) and in the mediastinum window setting 
(window width, 360 HU; window level, 60 HU) for evaluation. 
The image quality was evaluated for the following structures: 
lesion margins, visibility of small structures, noise, artefacts 
and diagnostic confidence. It was determined using a five-point 
rating scale to image quality (5 = excellent image quality with 
very good demarcation of structures, noise free; 4 = good image 
quality with good demarcation of structures, slight increase in 
noise or artefact; 3 = moderate image quality with reduction of 
sharpness, moderate increase in noise or artefact; 2 = poor image 
quality with blurred demarcation of structures, severe increase in 
noise or artefact; 1 = unassessable). When they disagreed, a third 
thoracic radiologist with more than 15 years of experience was 
asked to adjudicate the differences in order to obtain a consensus 
score.

Table 1.Comparisons of patient characteristics and radiation 
doses between groups

Characteristics LD group ULD 
group p

Age in years, mean ± SD 56.4 ± 6.8 55.4 ± 7.2 0.462

Males/females, n/n 42/89 42/97 0.196

Body weight in kg, mean 
± SD

67.3 ± 8.7 66.2 ± 9.8 0.115

Body mass index in kg 
m–2, mean ± SD

24.9 ± 2.6 24.6 ± 2.5 0.729

Smokers, n/N (%) 42/130 (32) 45/139 (32) 0.891

Passive smokers, n/N (%) 69/130 (53) 63/139 (45) 0.989

Occupational expose, 
n/N (%)

13/130 (10) 10/139 (7) 0.549

Effective dose in mSv, 
mean ± SD

1.20 ± 0.08 0.67 ± 0.08 0.003a

LD, low dose; ULD, ultra-low dose.
aSignificant difference between groups.

Table 2.Objective image quality comparison

LD group ULD group

FBP iDose4 IMR FBP iDose4 IMR
CT attenuation (HU) 47.6 ± 7.7 47.9 ± 7.3 47.4 ± 7.0 47.6 ± 7.5 46.8 ± 7.0 47.4 ± 7.3

Noise (HU) 62.2 ± 13.1 37.4 ± 7.4 12.3 ± 1.5 82.1 ± 19.5 46.9 ± 9.1 14.4 ± 1.9

FBP, filtered backprojection; HU, Hounsfield units; IMR, iterative model reconstruction; LD, low dose; ULD, ultra-low dose.
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Nodule detection
All non-calcified nodules were recorded and classified as solid 
and ground-glass opacity categories. The solid nodules were 
further classified by long-axis diameters in axial plane to three 
groups  (less than 4 mm, 4–8 mm and greater than 8 mm), as 
well as ground-glass opacity nodules to two groups (less than 5 
mm and not less than 5 mm).10 The number of nodules detected 
in both LD and ULD images with different reconstruction algo-
rithms were recorded and compared.

Radiation dose analysis
Total dose-length product, which represented the total absorbed 
dose for all the scans, were recorded from CT dose report. Esti-
mated effective dose was calculated from dose-length product 
using a conversion factor of 0.014.11

Statistical analysis
All continuous values were expressed as mean ± SD. To compare 
the invariable relationships of the patients’ demographic and 
pathological characteristics between groups, we used χ2 test 
when the predictor was categorical and independent t-test when 
the predictor was quantitative. The objective image noise were 
compared with ANOVA analysis; if there was a significant differ-
ence, pairwise comparisons would be performed with student-
Newman-Keuls (SNK) test. The subjective scores were compared 
by using the Friedman test; if there was a significant difference, 
pairwise comparisons would be performed with the Steel–Dwass 
test. Interobserver agreement for subjective image scores was 
measured using Kappa test. The number of detected nodules 

were compared by using χ2 test. All statistical analyses were 
performed with commercially available software (SPSS v. 20.0; 
SPSS Inc, Ill, Excel 2013, Microsoft, Chicago, IL). A value of p < 
0.05 was considered a statistical significant difference.

Results
Patients demographics and radiation dose
The results of patient demographics and radiation dose are 
summarized in Table  1. There was no significant difference 
between the two groups with respect to age, gender, BMI and 
the clinical characteristics including history of smoking and 
occupational expose. The effective dose of ULD group was 
significantly reduced compared to LD group (1.20 mSv ± 0.08,  
0.67 mSv ± 0.08, p = 0.003).

Figure 1.Comparison of image noise among LD and ULD 
groups with different reconstruction algorithms. FBP, filtered 
backprojection; IMR, iterative model reconstruction; LD, low 
dose; ULD, ultra-low dose.

Table 3.Subjective image quality score

LD group ULD group

FBP iDose4 IMR FBP iDose4 IMR
Lung 3.91 ± 0.76 4.57 ± 0.52 4.82 ± 0.29 3.42 ± 0.65 4.11 ± 0.47 4.70 ± 0.42

Mediastinum 2.19 ± 0.81 3.51 ± 0.92 4.56 ± 0.58 1.58 ± 0.62 3.03 ± 0.91 4.14 ± 0.69

FBP, filtered backprojection; IMR, iterative model reconstruction; LD, low dose; ULD, ultra-low dose.

Figure 2. Image quality score for lung (a) and mediasti-
num (b) structures in LD and ULD groups. Only IMR images 
enabled a diagnostic acceptable image quality in both 
groups for both lung and mediastinum structures (red 
line, score ≥3). FBP, filtered backprojection; IMR, iterative 
model reconstruction; LD, low dose; ULD, ultra-low dose. 
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Objective image assessment
There was significant difference for all comparison combina-
tions among the different dose groups with different reconstruc-
tion algorithms, except LD-IMR vs ULD IMR (p = 0.124). No 
difference was found in CT attenuation among all six series (p 
= 0.883). IMR images in both groups showed significant noise 
reduction compared to FBP and iDose4. Details are demon-
strated in Table 2 and Figure 1.

Subjective image assessment
There was no significant disagreement between the two radiol-
ogists (κ = 0.57–0.87), except the ULD-FBP images for lung 
structures (κ = 0.38). All the subjective image quality scores 
for each series were summarized in Table 3 and Figure 2. IMR 
significantly improved subjective image quality compared to 
iDose4 and FBP, especially for mediastinum structures in ULD 

group. There was significant difference in lung structure scores 
for all comparison combinations among all six series, except for 
LD-IMR vs ULD IMR images, and LD-iDose4 vs ULD-iDose4 
(both, p > 0.05). Significant differences were found in medias-
tinum structure scores for all comparison combinations among 
the six series.

Nodule detection
The number of nodules detected in both groups with different 
reconstruction settings were summarized in Table  4. IMR 
enabled a higher number of nodules detected in both LD and 
ULD groups for all kinds of nodules, except for solid nodules 
between 4 and 8 mm. No difference was found in the number of 
nodules detected among the three algorithms in both groups for 
different kinds of nodules, except between IMR and FBP in ULD 
groups for solid nodules less than 4 mm(54 vs 37, p = 0.048).

Table 4.Number of detected nodules using different algorithms in two dose groups

SN (<4 mm) SN (4–8 mm) SN (>8 mm) GGN (<5 mm) GGN (≥5 mm)

LD FBP 40 39 0 3 11

iDose4 50 49 0 5 13

IMR 52a 51 0 6 13

ULD FBP 37 31 1 12 31

iDose4 48 38 1 14 31

IMR 54 36 1 15 32

FBP, filtered backprojection; GGN, ground-glass opacity nodules; IMR, iterative model reconstruction; LD, low dose; SN, solid nodules; ULD, ultra-
low dose.
aSignificant difference in detected nodule numbers compared to FBP using χ2 test.

Figure 3.Transverse chest CT images of a 52-year-old female (BMI = 18.29 kg m–2) who had two GGOs in the apicoposterior 
segment of left upper lobe (arrow); the larger one (32 × 26 mm) had a solid component. (a) FBP image of LD group; (b) iDose4 
image of LD group; (c) IMR image of LD group; (d) iDose4 image of stand-dose (120 kVp/200 mAs) in 15 days later from the same 
patient. There was no difference of lesion detection among different algorithms (especially for iMR) in low-dose CT and stand-
dose CT. BMI, body mass index; FBP, filtered back projection; GGOs, ground-glass opacities; IMR, iterative model reconstruction; 
LD, low dose.
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Discussion
The LDCT scans performed in our study involves a further dose 
reduction of 40% than the screening CT performed in NLST 
study (1.2 mSv vs 2 mSv). Diagnostic image quality of both lung 
and mediastinum structures were achieved in the LDCT scans 
with the use of iDose4 and IMR. IMR offered further objec-
tive noise reduction and better subjective image quality scores 
compared to iDose4, while FBP exhibited increased noise and 
failed in diagnostic image quality of mediastinum structures. 
Nodule detectability was found not significantly associated 
with reconstruction algorithms in LDCT scans (Figures  3 and 
4). Moreover, ULD-CT scans performed in our study reduced 
the radiation dose to 0.67 mSv, which was approximately 44% 
further reduction than LDCT. In ULD-CT scans, only IMR 
enabled diagnostic image quality of both lung and mediastinum 
structures, neither FBP nor iDose,4 enabled diagnostic image 
quality of mediastinum. In addition, IMR was found superior 
than FBP in nodule detectability for solid nodules less than 4 mm 
in ULD group (Figures 5 and 6).

To our knowledge, IMR is an advanced IR algorithm that differs 
from hybrid IR algorithms for its use of system optics to model 
the acquisition process as accurately as possible in addition to 
photon and noise statistics.12 In theory, IMR enables lower 
image noise and better low-contrast detectability thus to opti-
mize dose protocol further. Previous study13 demonstrated that 
with the use of IMR, diagnostic image quality can be achieved 
on sub-mSv (0.9 mSv) chest scans with even better delineation 
of lesion margins. Our study observed similar results that IMR 
enabled superior image quality compared to iDose4 and FBP, 
especially for mediastinum structures at ULD scans. Moreover, 
we observed in ULD scans, iDose4 enabled diagnostic acceptable 
image quality in lung but failed in mediastinum, and similarly, 
in LD scans, FBP enabled diagnostic image quality in lung but 
failed in mediastinum.

This indicates that it is more difficult for LD scans to achieve 
diagnostic image quality in mediastinum compared to in lung 
and further noise reduction is needed for diagnostic image 

Figure 4. Transverse chest CT images of a 54-year-old female (BMI = 21.48 kg m–2) who had a nodule with calcification in the left 
lobe of thyroid gland (arrow) in LD group. Images were obtained with (a) FBP, (b) iDose4 and (c) IMR. The diagnostic confidence 
of IMR image was much higher than iDose4 and FBP. The lesion was apparent in IMR image, and available in iDose4 image, but 
missed in FBP image. BMI, body mass index; FBP, filtered back projection; IMR, iterative model reconstruction; LD, low dose.

Figure 5.Transverse chest CT images of a 55-year-old female (BMI = 20.43 kg m–2) who had a GGO (3 × 3 mm) in the apicoposte-
rior segment of left upper lobe (arrow) in the ULD group. (a) FBP image; (b) iDose4 image; (c) IMR image from the same patient. 
This lesion was visible on IMR and iDose4 image, but missed on FBP image in this study. As compared with images a and b image c 
shows reduced artefacts and higher diagnosis confidence. BMI, body mass index; FBP, filtered back projection; GGO, ground-glass 
opacity; IMR, iterative model reconstruction; ULD, ultra-low dose.

http://birpublications.org/bjr
https://www.birpublications.org/action/showImage?doi=10.1259/bjr.20170658&iName=master.img-003.jpg&w=509&h=110
https://www.birpublications.org/action/showImage?doi=10.1259/bjr.20170658&iName=master.img-004.jpg&w=368&h=186


6 of 7 birpublications.org/bjr Br J Radiol;91:20170658

BJR  Zhang et al

References

	 1.	 American Lung Association. Providing 
guidance on lung cancer screening to 
patients and physicians. 2013. Available 
from: http://www.​lung.​org/​lung-​disease/ 
lung-cancer/lung-cancer-screening-
guidelines/lung-cancer ​screening.​pdf

	 2.	 Church TR, Black WC, Aberle DR, Berg 
CD, Clingan KL, Duan F, et al. Results of 
initial low-dose computed tomographic 
screening for lung cancer. N Engl J Med 2013; 
368: 1980–91. doi: https://​doi.​org/​10.​1056/​
NEJMoa1209120

	 3.	 Aberle DR, DeMello S, Berg CD, Black WC, 
Brewer B, Church TR, et al.Results of the 
two incidence screenings in the national 
lung screening trial. N Engl J Med 2013; 
369: 920–31. doi: https://​doi.​org/​10.​1056/​
NEJMoa1208962

quality of mediastinum images. The main reason could be that 
it is easier for image quality of mediastinum to be deteriorated 
by substantial increased image noise at LD conditions, consid-
ering there is relatively lower contrast between different tissues 
in mediastinum as compared to lung.14

However, to find suspicious nodules by observing lung structures 
plays the main role in lung screening chest scans, which indi-
cates that ULD scans with iDose4 may enable the key demands 
of lung screening scans by providing diagnostic image quality 
of lung structures, despite it failed in diagnostic image quality 
of mediastinum structures. As to the lung nodule detection, we 
found that there was no significant difference in the number 
of nodules detected between IMR and iDose4 in both LD and 
ULD scans for each kind of nodule, while FBP detected lower 
number of solid nodules with a diameter less than 4 mm in ULD 
scans. We attribute this to inadequate image quality of FBP for 
both lung and mediastinum structures in ULD scans. Moreover, 
diagnostic information acquired by observation of mediastinum 
structures such as lymph node and pleural is necessary and in 
favour of evaluating other complications in lung screening chest 
scans.15,16 Hence, it is of practical importance because sub-mSv 
chest CT with IMR are able to help reduce the risk of radiation 
exposure without any compromising of diagnostic information 
including both lung and mediastinum information for patients 
who undergo lung screening scans.

In addition, it is worth to note that the LDCT protocol combined 
with iDose4 was practiced as reference standard instead of full-
dose protocol with FBP reconstruction in our study, considering 
iDose4, the hybrid IR, has already been used routinely with 

robust reconstruction speed, as well as the hybrid IRs such as 
iDose4, sinogram-affirmed iterative reconstruction, and adaptive 
statistical iterative reconstruction were observed yielding diag-
nostic image quality in LD chest CT with similar dose setting at 
around 1 mSv.13,17,18

Our study has several limitations. First, a relatively small number 
of positive cases were reviewed in the study. Second, the patho-
logical results have not come out for the positive cases. There 
was no gold standard to verify lesion detection accuracy of all 
the algorithms. Third, protocols with fixed tube current prod-
ucts were used in our study for stable scan dose; automatic tube 
current modulation techniques can be used in further study to 
maintain the image noise at consistent for patients with different 
sizes. Fourth, the overweight subjects (BMI ≥30 kg m–2) were 
excluded; further studies will need to investigate the effect of 
IMR in chest CT on obese patients.

Conclusion
In conclusion, both IMR and iDose4 enables diagnostic image 
quality in 40% reduction LD chest scans; meanwhile, IMR 
enables significant reduction of the image noise and improve-
ment of image quality in sub-mSv (66% reduction) chest scans. 
IMR with significant better image quality may emphasize its 
potential to better nodule detectability in ULD scans and help 
the sub-mSv protocols become the clinical routine in lung cancer 
screening.

Funding
This study has received funding by Beijing Municipal Commis-
sion of Science and Technology.

Figure 6. Transverse chest CT through the ascending aorta in a 61-year-old female (BMI = 26.37 kg m–2) with mediastinum lymph 
node enlargement (arrow). Images were obtained with FBP (a), iDose4 (b) and IMR (c) in ULD group. Note the excellent depiction 
of mediastinum lymph node on the IMR image (score 5), compared with FBP (score 3) and iDose4 (score 4). SNR on IMR image 
is 3.32 dB, showing higher than those on FBP (0.55 dB) and iDOSE4 (0.89 dB) in this patient. BMI, body mass index; FBP, filtered 
back projection; IMR, iterative model reconstruction; SNR, signal-noise ratio; ULD, ultra-low dose.
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Objective: We propose the application of virtual nodules

to evaluate the performance of computer-aided detec-

tion (CAD) of lung nodules in cancer screening using low-

dose CT.

Methods: The virtual nodules were generated based on

the spatial resolution measured for a CT system used in

an institution providing cancer screening and were fused

into clinical lung images obtained at that institution,

allowing site specificity. First, we validated virtual nodules

as an alternative to artificial nodules inserted into

a phantom. In addition, we compared the results of CAD

analysis between the real nodules (n56) and the

corresponding virtual nodules. Subsequently, virtual nod-

ules of various sizes and contrasts between nodule

density and background density (DCT) were inserted into

clinical images (n5 10) and submitted for CAD analysis.

Results: In the validation study, 46 of 48 virtual nodules

had the same CAD results as artificial nodules (kappa

coefficient50.913). Real nodules and the corresponding

virtual nodules showed the same CAD results. The

detection limits of the tested CAD system were de-

termined in terms of size and density of peripheral lung

nodules; we demonstrated that a nodule with a 5-mm

diameter was detected when the nodule had

a DCT.220HU.

Conclusion: Virtual nodules are effective in evaluating

CAD performance using site-specific scan/reconstruction

conditions.

Advances in knowledge: Virtual nodules can be an

effectivemeans of evaluating site-specific CADperformance.

The methodology for guiding the detection limit for nodule

size/density might be a useful evaluation strategy.

INTRODUCTION
Screening by low-dose CT has been shown to reduce
mortality from lung cancer in high-risk individuals.1

Computer-aided detection (CAD) systems are increasingly
being used to assist radiologists in the detection of lung
nodules. Performance evaluations of CAD systems for the
detection of lung nodules have been carried out using
clinical images including actual nodules.2–4 When a CAD
system is introduced in an institution providing CT
screening, its performance should be evaluated by image
data obtained under the same scan and image re-
construction conditions as those used at that site, because
of the dependence of CAD performance on scan/
reconstruction conditions.5–7 However, it would be diffi-
cult for end users of a CAD system to archive a large

database of CT screenings with sufficient numbers of
nodules at each screening site. Public image databases are
available,8 but such images are usually obtained under
a limited range of scan/reconstruction conditions, which
are not always equivalent across institutions. One way to
overcome this limitation is with the use of a lung phantom
containing artificial nodules.9,10 Images of the phantom
acquired with the same scan/reconstruction parameters as
those used for screening are then subjected to CAD. This
approach is effective for assessing site-specific CAD per-
formance. Another method is the use of virtual (computer-
simulated) nodules.11,12 As virtual nodules can be fused
into the clinical images obtained in each institution, this
approach can also lead to the evaluation of site-specific
CAD performance. However, virtual nodules are obtained
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by arbitrarily selected modelling and filtering such that the re-
sultant nodules appear to be similar to real nodules (i.e. they do
not accurately depend on the characteristics of the spatial res-
olution in the CT system). This is a large disadvantage of virtual
nodules compared with artificial nodules.

Another approach to generating nodules has been reported.13–15

In this method, virtual nodules are computed with a dependence
on the spatial resolution characteristics measured for each CT
system, which, in turn, are based on the image-generating sys-
tem itself. Therefore, this method is the most appropriate
computational technique for nodule generation. We have ex-
plored the feasibility of using this method to assess CAD per-
formance; in this study, the virtual nodules were suggested to be
useful for generating free-response receiver-operating charac-
teristic curves for a CAD system.16 However, in this preliminary
study, the validity of the use of virtual nodules as an alternative
to artificial nodules included in a lung phantom was not verified.
A comparative study between virtual and artificial nodules is
necessary. In addition, the use of virtual nodules has the po-
tential advantage of being suitable for assessing the dependence
of CAD performance on nodule size and density. This is because
of the predetermined (known) size and density of the nodules.
When using real nodules in CT images obtained from patients,
the true values of the size and density of the nodules are not
known. Real nodules have heterogeneous densities and various
complicated shapes; therefore, it is difficult to measure their size
and density accurately. By using virtual nodules, we are able to
clarify the detection limit of the CAD system in terms of nodule
size and density. This might lead to a useful evaluation strategy
of CAD performance.

In this study, we first validated the application of virtual
nodules13–16 regarding their use for the evaluation of CAD
performance in place of artificial nodules included in a lung
phantom. Next, as a further validation study, virtual nodules
were made to appear to be comparable with real nodules with
regard to size and density and were applied to the detection test
of the CAD system. Finally, we demonstrated the detection limit
of the CAD system in terms of nodule size and density.

METHODS AND MATERIALS
Virtual nodules
We assume that CT image blurring is described by a two-
dimensional (2D) point spread function (PSF) in the x–y scan
plane and a slice sensitivity profile (SSP) in the z direction
perpendicular to the scan plane.13,17,18 The three-dimensional
CT image I(x,y,z) is expressed as

Iðx; y; zÞ5½Oðx; y; zÞppPSFðx; yÞ�pSSPðzÞ; (1)

where O(x,y,z) is the object function and PSF(x,y) and SSP(z)
are the 2D PSF and SSP, respectively. The operators � and �� are
one-dimensional and 2D convolutions, respectively. The image
simulation based on Equation (1) has been used widely and its
validity has been verified.13–15

The PSF and SSP are measured in a CT scanner. Object functions
are generated numerically as ideal spheres with uniform density

on the assumption of typical solitary pulmonary nodules
(Figure 1a). The image I(x,y,z) is calculated from Equation (1)
(Figure 1b). Subsequently, the computer-simulated nodule is
resampled in three dimensions with intervals equal to the pixel
size and slice interval found in clinical CT images (Figure 1c).19

The resultant image is a virtual nodule that can be fused into
practical images by the process shown in Figure 1d and can be
used for clinical evaluation.19,20 In image fusion, the nodule is
added into multiple slices to cover the whole virtual nodule in
the z direction (only the centre slice is shown in Figure 1d).

Validation using artificial nodules in a phantom
Phantom and measurements of point spread
function and slice sensitivity profile
We used a commercially available anthropomorphic chest
phantom (LSCT001; Kyoto Kagaku Co. Ltd, Kyoto, Japan)
(Figure 2). CT images of this phantom are considered to be
similar to actual CT images obtained in clinical examinations.21

The artificial nodules included in the phantom were placed at
three levels: the lung apex, the tracheal bifurcation and the lung
base. In each slice level, there were artificial nodules with a high
density of 2630HU in the left lung and with a low density of
2800HU in the right lung.21 The background density was
2900HU; then, the contrast between nodule density and
background density (DCT) was 270HU for high-contrast nod-
ules and 100HU for low-contrast nodules. The example image
shown in Figure 2 is of the lung base. In this study, we used four
high-contrast nodules with diameters of 4mm, 6mm, 8mm and
10mm and four low-contrast nodules with diameters of 6mm,
8mm, 10mm and 12mm.

A four-detector row CT scanner (Asteion; Toshiba Medical
Systems, Tokyo, Japan) was used for the validation study. The
PSF and SSP were measured for the FC50 (for standard lung
imaging) kernel and for slice thickness of 8mm, respectively.
The PSF was determined by scanning a high-contrast CT test
phantom (MHT-type; Kyoto Kagaku Co. Ltd, Kyoto, Japan); this
method includes a means of verifying the obtained PSF and is
therefore considered to give accurate values.22,23 The SSP was
measured with the use of a Gold Disk Delta phantom (Kyoto
Kagaku Co. Ltd), comprising a gold disc 50-mm thick and
1.0mm in diameter placed in a tissue-equivalent material
(acrylic).

Comparison of virtual nodules with artificial nodules
The lung phantom was scanned at 30mA, 120kV, 435mm col-
limation, 0.75 s/rotation and pitch factor of 1.375. A targeted image
reconstruction was performed using a field of view (FOV) of
60mm, slice thickness of 8.0mm, FC50 reconstruction kernel and
matrix size of 5123512. We used the image through the middle of
the artificial nodules at the slice level of the lung base (Figure 2).

The object functions were generated as ideal spheres whose size
and DCT corresponded to those of eight artificial nodules at the
slice level of the lung base. The virtual nodules obtained from
the object functions were compared with the images of the
corresponding artificial nodules, and the image differences were
quantified by the standard deviation (SD) on the sub-
tracted image.
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Comparison of computer-aided detection system
detections for virtual nodules and artificial nodules
The lung phantom was scanned and reconstructed with tube
currents of 30mA and 200mA, a slice thickness of 8.0mm with
an interval of 8.0mm and an FOV of 320mm (other conditions
were the same as described in the above section). The two tube
currents corresponded to different CT scanning conditions and

the 320-mm FOV was chosen to mimic a clinical setting for CT
screening and CAD analysis. The computer-simulated nodules
were generated from object functions having the same size/
density as the artificial nodules, as illustrated in Figure 1a,b. The
virtual nodules were obtained by resampling the computer-
simulated nodules (Figure 1c). The virtual nodules obtained

Figure 1. A schematic explanation of virtual nodule generation: (a) the object function of a typical solitary pulmonary nodule with

a diameter of 6mm; (b) a computer-simulated nodule obtained from the object function by Equation (1); (c) a virtual nodule

generated by resampling the previous image (b) in three dimensions at clinical CT image resolution; (d) a virtual nodule added to

the clinical CT image (arrow).

Figure 2. An image of a chest phantom including artificial

nodules: there are five high-contrast nodules in the left lung

with diameters of 2mm, 4mm, 6mm, 8mm and 10mm

(arrows) and five low-contrast nodules in the right lung with

diameters of 12mm, 10mm, 8mm, 6mm and 4mm (arrow-

heads). The high-contrast 2-mm nodule and the low-contrast

4-mm nodule were not used in this study because of the

difficulty in identifying them in this image.

Figure 3. Virtual nodules added to the phantom image

containing artificial nodules: each virtual nodule (arrows) has

been placed near the location of the corresponding artificial

nodule (arrowheads).
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were superimposed onto the phantom images (Figure 3). We
chose 24 artificial nodules in the left and right lungs at the 3 slice
levels, and we used 2 kinds of phantom images obtained with
tube currents of 30mA and 200mA; i.e. a total of 48 nodules
were used. The detection test of the CAD system was performed
on the 48 artificial nodules and the corresponding virtual nod-
ules. We applied Cohen’s kappa coefficient (k) to assess the
agreement in detection results between the artificial nodules and
the virtual nodules using the CAD system. The CAD system
used for the detection test was a prototype one developed by our
research team,24 and its development has continued.

Validation with real nodules
An image database archived at an institution providing low-dose
CT screening for lung cancer was used. Ethical board approval to

access image data was obtained from the institution. Images
were obtained with a four-detector row CT scanner (Asteion;
Toshiba Medical Systems). This scanner is different from the one
described in the above section. The scan was performed at
a setting of 30mA, 120 kV, 43 5mm collimation, 0.75 s/rotation
and pitch factor of 1.375. Image reconstruction was performed
with a slice thickness of 8.0mm at an interval of 8.0mm, an
FC50 reconstruction kernel and an FOV of 280–350mm. The
PSF and SSP were measured on this scanner for the kernel and
the slice thickness, respectively.

Image data sets in the database were applied to the detection test
of the CAD system described above. We chose image data sets of
six cases from the database in which a nodular shadow on the
image suggested the presence of lung cancer; three of those

Figure 4. Real nodules (arrows) in patient images (a), (c) and (e) are showing computer-aided detection results of true positives

(TPs) and corresponding virtual nodules (arrowheads) added into comparable images (b), (d) and (f) of other cases; images were

generated using maximum intensity projection of three consecutive sections with the nodule in the centre section. The diameters

and contrasts (between nodule density and background density) of object functions used for generating virtual nodules were

6.0mm and 250HU (b), 5.5mm and 350HU (d) and 5.6mm and 310HU (f).
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nodules were detected by the CAD system [i.e. true positive
(TP)] (Figure 4) and the others were not detected [i.e. false
negative (FN)] (Figure 5). To simulate these nodules, we gen-
erated various virtual nodules by changing the diameter and
density of the object functions (uniform spheres). Then, we
compared the obtained virtual nodules with the real nodules
qualitatively in terms of size and density. By visual inspection,
we chose virtual nodules that appeared to be most similar to the
real nodules overall. Further image data sets of additional cases
were selected from the database. In these data sets, the virtual
nodules were situated in locations similar to those of the original
real nodules with regard to anatomical structures around the
nodules, as indicated in Figures 4 and 5. When deciding nodule
placement locations, to locate blood vessels existing near

nodules, we used maximum intensity projection images gener-
ated from three consecutive sections with the virtual nodule in
the middle section. The resulting data sets (plus data sets with
subtle changes in positions of the virtual nodules in Figure 5)
were submitted for analysis by the CAD system.

Application of virtual nodules to computer-aided
detection performance evaluation
The object functions were generated as typical solitary pulmo-
nary nodules of ideal spheres with diameters of 4.0mm, 4.5mm,
5.0mm, 6.0mm, 7.0mm and 8.0mm, and DCT was changed
from 100HU to 800HU in 100-HU increments.25 A corre-
sponding virtual nodule was obtained from each object func-
tion. We used image data sets of 10 cases obtained from the

Figure 5. The analogous comparison of real nodules (left) with corresponding virtual nodules (right) as described in Figure 4, but

here with real nodules showing computer-aided detection results of false negatives (FNs): the diameters and contrasts between

nodule density and background density of object functions used for generating virtual nodules were 4.5mm and 360HU (b), 7.0mm

and 480HU (d) and 4.3mm and 320HU (f).
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database described in the above section and placed the virtual
nodules in the images. Some examples of resultant images are
shown in Figure 6. We chose one axial image at the level of the
tracheal bifurcation slice in each case, and a virtual nodule
obtained with a selected diameter and DCT was fused into the
image at five locations in the left lung (Figure 6). The three-
dimensional virtual nodule occupied multiple 2D slices (only the
centre slice is shown in each image in Figure 6). The locations of
virtual nodules were selected in the lung periphery so that there
was no overlap with large blood vessels, adjacent nodules were
sufficiently distant and there was no contact with the lung wall.
A total of 48 virtual nodule data sets were obtained per case for
the combinations of the 6 diameters and 8 DCT values.

We performed CAD system detection in all image data sets.
When the total number of TP detections for five nodules with
a selected diameter and DCTwas $4 (i.e. detection rate $80%),
the CAD was considered to be able to detect that nodule. In this
manner, for all settings of the diameter and DCT, we determined
the nodule detectability of CAD.

RESULTS
Validation with artificial nodules
Comparison of virtual nodules with artificial nodules
In Figure 7, virtual nodules are compared with the images of
high-contrast artificial nodules scanned from the phantom.
Subtraction of these images shows little residual intensity around
the nodules, except for a component related to noise, artefacts and
fine structures in the simulated lung of the phantom (Figure 7c).
The equivalent result for low-contrast nodules is obtained (not
shown). The SD values measured for high-contrast nodules in the
regions of interest on the subtraction image (Figure 7c) are
summarized in Table 1, in which these values were averaged. The
SD values for the background (measured in the regions of interest
indicated in Figure 7a) varied with location in the lung; their
mean value is shown in the table. Values were also obtained for
low-contrast nodules and summarized in Table 1. The mean

values of the SD for high-contrast and low-contrast nodules did
not exceed those for the corresponding background.

Comparison of computer-aided detection system
detections for virtual nodules and artificial nodules
The results of CAD system detections for virtual nodules were
compared with those for the corresponding artificial nodules.
The total numbers of TP and FN detections for all nodules are
summarized in Table 2. For 20 virtual nodules detected by CAD,
18 corresponding artificial nodules were detected. For the 28
virtual nodules not detected by CAD, the corresponding artificial
nodules were also not detected. 46 of the 48 virtual nodules
showed the same TP and FN detections as those for the artificial
nodules, indicating near perfect agreement (k5 0.913).

Validation with real nodules
All virtual nodules in Figure 4 were detected by the CAD system,
and those in Figure 5 were not detected, indicating the

Figure 6. Five virtual nodules have been added to a clinical

image at locations in the lung periphery: the object function

diameters and contrasts (between nodule density and back-

ground density) are (a) 5mm and 200HU and (b) 7mm and

400HU, respectively.

Figure 7. A comparison of virtual nodules with the phantom

image containing high-contrast artificial nodules: (a) artificial

nodules—the regions of interest (ROIs), indicated by boxes,

were used to determine a representative standard deviation

(SD) of the background intensity; (b) virtual nodules are

corresponding to artificial nodules; (c) the image obtained by

subtracting each nodule image (b) from (a). The SDs of the

subtraction residuals were evaluated in the ROIs indicated by

the dashed circles. A narrow window width (400HU) was used

for all images.
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agreement with detection results of corresponding real nodules.
For the virtual nodules in Figure 5, the locations of the nodule
centres were changed from their initial locations, as shown in
Figure 8. When the nodules were repositioned away from the
blood vessels (Figure 8a,b), detection results became TP. For the
virtual nodules not located close to blood vessels (Figure 8c),
changing the location of nodule had no effect on its undetect-
ability (FN).

Evaluation of computer-aided detection
performance by virtual nodules
The CAD system detection of virtual nodules in a subject is
shown in Figure 9. When the diameter and DCT of the object
function were set at 5mm and 200HU, respectively, only two
nodules were detected (Figure 9a). However, when the DCTwas
increased to 300HU, all five of the virtual nodules were detected
(Figure 9b). The summary results for all detections plotted in
the diameter–DCT space are shown in Figure 9c. The results
from Figure 9a,b are denoted as “undetectable” and “detectable”
data, respectively, in Figure 9c. When the nodule diameter was
increased, the minimum DCT required for nodule detection
decreased. The solid line delineates the detection limit. The
trends were similar for other cases and the overall average de-
tection limit is shown in Figure 10. When the nodule diameter

was .5mm, nodules with a DCT more than approximately
220HU would be detectable with CAD. In addition, the nodule
with a diameter of approximately 8mm was detectable even with
a DCT as low as approximately 130HU. For detecting a small
nodule 4mm in diameter, the nodule must have a very high
contrast of more than approximately 590HU. These results for
the detection limit in terms of nodule size and density dem-
onstrate the basic performance of the tested CAD system. The
mean number of FP detections was 4.8 per case; this value was
invariant to the size and density of the virtual nodules.

DISCUSSION
Because CAD performance is affected by scanning and image
reconstruction conditions,5–7 performance evaluation should be
implemented using the same site-specific conditions used for
lung cancer screening. The virtual nodules proposed in this
study were generated from the scan/reconstruction conditions of
a particular institution and thus, the CAD performance evalu-
ation intrinsically took into account local factors. The detection
limit that was determined for our prototype CAD system, in
terms of size and density of peripheral lung nodules (Figure 10),
served as a practical guide. As it has been reported that follow-
up CT is required for nodules of diameter .5mm,26 the eval-
uation of different detection limits that depend on site-specific
scan/reconstruction conditions is an important step towards the
clinical use of CAD systems.

The virtual nodule method was validated by comparing virtual
nodule images with images of artificial nodules in a lung
phantom (Figure 7 and Table 1). In the detection test of the
CAD system, the results for virtual nodules showed good
agreement with those for artificial nodules (Table 2). There were
only two virtual nodules that showed different results from those
of artificial nodules. This is attributed to the conditions of the
background (i.e. simulated lung in the phantom) around
the artificial nodules, which were different from those around
the fused virtual nodules, as seen in Figure 3. Taking this into
account, the agreement (k5 0.913) is highly satisfactory. These

Table 1. Standard deviations (SDs) in the regions of interest (ROIs) on the subtraction image between virtual nodules and artificial
nodules, indicated in Figure 7c for high-contrast nodules. SD values measured at various background locations (in the ROIs
indicated in Figure 7a) were averaged. These values were also obtained for low-contrast nodules

Region
SD (HU)

High-contrast nodules Low-contrast nodules

Nodule

12mm – 30.8

10mm 34.4 29.6

8mm 28.5 26.7

6mm 31.1 34.6

4mm 31.9 –

Mean value 31.5 30.5

Background

Mean value 33.7 32.3

HU, Hounsfield units.

Table 2. Number of true-positive (TP) detections and
false-negative (FN) detections by the computer-aided detection
system for virtual nodules and their corresponding artificial
nodules (kappa coefficient50.913)

Virtual nodule
Artificial nodule

TP FN Total

TP 18 2 20

FN 0 28 28

Total 18 30 48
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results indicate that virtual nodules can be applied to CAD
performance evaluation with similar accuracy to artificial nod-
ules. Moreover, virtual nodules avoid the expense of physical

manufacture of artificial nodules and can also be deployed in
clinical images. For CAD performance evaluation, virtual nod-
ules present a number of advantages over their artificial
counterparts.

Virtual nodules, which were generated and situated to be
comparable with real nodules (Figures 4 and 5), generated the
same CAD results as the real nodules, further elucidating the
dependence of CAD performance on nodule location (Figure 8).
This also supports the results depicted in Figure 10. The virtual
nodule shown in Figure 5b was generated from an object
function having a diameter of 4.5mm and a DCT of 360HU.
Although the nodule was judged to be detectable by the CAD
system (Figure 10), it was actually not detected. We surmise that
the reason was the nodule proximity to (or overlapping with)
a blood vessel; this was evidenced by the result that the nodule
was detected by moving it away from the blood vessel
(Figure 8a). This explanation also applies to the nodule shown in
Figures 5d and 8b (diameter of 7.0mm and DCT of 480HU).
Conversely, the virtual nodule shown in Figure 5f was generated
from an object function having a diameter of 4.3mm and a DCT
of 320HU. As shown in Figure 10, this nodule was accurately
predicted to be undetectable by the CAD system. In this case, the

Figure 8. Virtual nodules (arrows) not detected by the computer-aided detection (CAD) system: the virtual nodules shown in (a)–(c)

are the same as those in Figure 5b,d,f respectively. The locations of the nodule centres were changed from their initial locations to

those locations marked with closed triangles “:” and closed circles “d” in the figure. When nodules were placed on the locations

“:”, they were not detected by the CAD system. When nodules were placed on the locations “d”, they were detected.

Figure 9. Results of computer-aided detection (CAD) system

detections of virtual nodules fused into clinical lung images: (a)

two of the five virtual nodules were detected (indicated by

boxes) when the object function was 5mm in diameter and the

contrast between nodule density and background density was

(DCT)5200HU. (b) All five 5-mm virtual nodules were detected

when the contrast was DCT5300HU. (c) The summary of all

detection results with the detection limit is indicated by the solid

line. When four or more nodules were detected (i.e. detection

rate $80%), the data with the corresponding diameter and DCT

in the figure are marked as “s” (detectable); otherwise, they are

marked as “d” (undetectable).

Figure 10. The detection limit of the computer-aided detection

system averaged over all cases (n5 10) (Figure 9c). Error bars

are indicating standard deviation. DCT, contrast between

nodule density and background density.
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reason for undetectability would be the nodule size and density,
not the location; this was evidenced by the result that the nodule
remained undetectable after changing its location (Figure 8c).
The virtual nodules shown in Figure 4 were accurately predicted
to be detectable (Figure 10) as well. Only by using virtual
nodules can such detailed analysis about detections by the CAD
system be performed. This analysis is not possible when using
real nodules.

Our study has some limitations. First, the validation studies were
limited by the small number of artificial nodules included in the
phantom. And we used only our prototype CAD system
throughout our study. A greater number of nodules would be
beneficial, as would using additional scan/reconstruction settings
and CAD systems. Second, virtual nodules were generated from
object functions of ideal spheres with uniform density. For
better simulations of real nodules in patients, it is necessary to
generate virtual nodules using object functions of heterogeneous
density and non-uniform shape. This is theoretically possible,
because object functions can be generated numerically with
arbitrary shapes and densities. Third, accurate measurement of
the spatial resolution in a CT system is essential for generating
valid virtual nodules. When scanning a point-source phantom,
common methods, such as using a thin wire or a microbead,

have known difficulties in obtaining an accurate PSF.27 We
submit that the 2D PSF measurement method accompanied by
verification,22,23 which was used in the present study, yields
sound results for validation.

CONCLUSION
We proposed an application of virtual nodules to evaluate CAD
performance using the specific clinical scan/reconstruction
conditions of each site. We confirmed that virtual nodules eli-
cited results similar to those of artificial nodules. In addition, the
virtual nodules, which were made to be comparable with real
nodules, elicited the same CAD results as real nodules, further
illustrating the dependence of CAD performance on nodule
location. The detection limits of our prototype CAD system
were determined in terms of the size and density of peripheral
lung nodules; it was demonstrated that a 5-mm nodule was
detected when the nodule had a DCT. 220HU. This method-
ology of guiding the detection limit might be a useful strategy in
the evaluation of CAD performance.
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INTRODUCTION
The characterization of the properties of pulmonary nodules 
involves the estimation of nodule volume doubling time on 
follow-up CT.1–3 In the CT examinations conducted for the 
follow-up of lung cancer, computer-aided semi-automated 
volumetric measurements of pulmonary nodules are used 
to guide the diagnostic strategy.4,5 Repeated follow-up CT 
examinations in clinical practice can provide excessive radi-
ation exposure. Therefore, it is necessary to reduce the radi-
ation exposure dose of CT while maintaining the diagnostic 
ability. Model-based iterative reconstruction (MBIR) and 
hybrid iterative reconstruction (HIR) are widely used to 
reduce radiation exposure and improve diagnostic ability, 
because these techniques have lower image noise and fewer 

artefacts.6–9 However, the image texture and spatial resolu-
tion of these images obtained by MBIR or HIR are inade-
quate, especially on low-dose CT.10

A novel reconstruction algorithm, deep-learning recon-
struction (DLR), was recently developed. It incorporates 
noise and artefact reduction by a deep convolutional neural 
network.11,12 The DLR method incorporates a noise and 
artefact reduction filter with a deep convolutional neural 
network which is trained with noise-contaminated and 
noise-free training pairs to extract true signals from noisy 
images.11 DLR reduces the image noise and increases the 
spatial resolution simultaneously, unlike conventional 
noise reduction methods with trade-offs between spatial 
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Objectives The lung nodule volume determined by CT 
is used for nodule diagnoses and monitoring tumor 
responses to therapy. Increased image noise on low-
dose CT degrades the measurement accuracy of the 
lung nodule volume. We compared the volumetric accu-
racy among deep-learning reconstruction (DLR), model-
based iterative reconstruction (MBIR), and hybrid iter-
ative reconstruction (HIR) at an ultra-low-dose setting.
Methods Artificial ground-glass nodules (6 mm and 
10 mm diameters, −660 HU) placed at the lung-apex and 
the middle-lung field in chest phantom were scanned by 
320-row CT with the ultra-low-dose setting of 6.3 mAs. 
Each scan data set was reconstructed by DLR, MBIR, 
and HIR. The volumes of nodules were measured semi-
automatically, and the absolute percent volumetric error 
(APEvol) was calculated. The APEvol provided by each 
reconstruction were compared by the Tukey-Kramer 

method. Inter- and intraobserver variabilities were 
evaluated by a Bland-Altman analysis with limits of 
agreements.
Results DLR provided a lower APEvol compared to MBIR 
and HIR. The APEvol of DLR (1.36%) was significantly 
lower than those of the HIR (8.01%, p = 0.0022) and 
MBIR (7.30%, p = 0.0053) on a 10-mm-diameter middle-
lung nodule. DLR showed narrower limits of agreement 
compared to MBIR and HIR in the inter- and intraob-
server agreement of the volumetric measurement.
Conclusions DLR showed higher accuracy compared to 
MBIR and HIR for the volumetric measurement of artifi-
cial ground-glass nodules by ultra-low-dose CT.
Advances in knowledge DLR with ultra-low-dose setting 
allows a reduction of dose exposure, maintaining accu-
racy for the volumetry of lung nodule, especially in 
patients which deserve a long-term follow-up.
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resolution and noise reduction.11 Compared to other traditional 
reconstruction methods, the DLR technique help improve the 
image quality, especially at low-dose settings.13 We have thus 
speculated that DLR is a suitable reconstruction method for 
ultra-low-dose CT and that the use of DLR could improve the 
accuracy of measurements of the volume of pure ground-glass 
nodules (GGNs) compared to HIR and MBIR. We conducted the 
present study to compare the accuracy of HIR, MBIR, and DLR 
in the volumetric measurement of artificial pure GGNs by ultra-
low-dose CT.

METHODS AND MATERIALS
Phantom
A chest phantom used for lung cancer screening CT (LSCT-001 
chest phantom, Kyoto Kagaku Co. Ltd., Kyoto, Japan) was used14 
(Figure 1). The lung parenchyma of the phantom consists of a 
combination of urethane foam and styrene resin that shows a CT 
value of approx. −900 HU. Two sets of spherical artificial pure 
GGNs (6 mm and 10 mm diameters, −660 HU) were placed at the 
lung apex level and the middle lung field level of the phantom. 
Thus, a total of four artificial were placed in the phantom. The 
volume of the 6-mm-diameter GGN was 113.1 mm3, and that of 
the 10-mm-diameter GGN was 523.6 mm3.

Image acquisition
The chest phantom with artificial pure GGNs was scanned on 
a 320-row detector CT system (Aquilion ONE/PRISM Edition: 

Canon Medical Systems, Otawara, Japan). The following scan-
ning parameters were used: X-ray tube voltage, 120 kV; detector 
configuration, 0.5 mm × 80 rows, beam pitch, 0.8; gantry rotation 
time, 0.5 second ; X-ray tube current, 160, 80, and 10 mA. The 
effective milliampere-second (mAs) values were thus set at 100, 
50, and 6.3 mAs. All acquisitions were repeated six times consec-
utively with shifting the scan start position by 60 degrees each to 
compensate for random errors in data measurements. Each set of 
raw data was subjected to HIR (Adaptive Iterative Dose Reduc-
tion 3D [AIDR 3D] Standard FC13), MBIR (Forward projected 
model-based Iterative Reconstruction SoluTion [FIRST] BODY 
Standard), and DLR (Advanced intelligent Clear-IQ Engine 
[AiCE] BODY Standard). The lung kernel is generally adopted 
on detection of lung nodules. However, Wang Y et al reported 
that the soft tissue kernel was appropriate for accurate quantita-
tive evaluation in lung nodule volume measurement.15 We thus 
adopted the soft tissue kernel in this study.

Assessment of radiation doses
Radiation doses of each scan were recorded in terms of the 
volume CT dose index (CTDIvol [mGy]) and the total dose-
length product (DLP [mGy cm]). CTDIvol and DLP values were 
obtained from the dose page provided from the CT scanner. 
The effective dose was estimated from the DLP using a normal-
ized effective dose constant of 0.014. The relative percentage 
compared with the average effective dose of 1.5 mSv in the low-
dose screening of National Lung Screening Trial (NLST) in 
United States were calculated for each tube current.16

Volumetric protocols
Two radiological technologists experienced in CT examinations 
(7 and 10 years experience) performed volumetric measure-
ments for the chest phantom data. A total of 216 nodules (2 size 
nodules × 2 locations × 3 tube currents × 6 repeated scans × 3 
reconstruction algorithms = 216 nodules) were measured, and 
the measurements of six repeated scans were averaged at each 
reconstruction algorithm. The volumetric measurements for the 
artificial pure GGNs were performed independently at the same 
lung window setting (window level, −600 HU; window width, 
1500 HU) using a semi-automated method on CT workstation 
(Synapse Vincent; Fujifilm Medical, Tokyo, Japan).

In the volumetric measurement, a level of the maximum diam-
eter of an artificial pure GGN was selected and the GGN volume 
measurement was performed semi-automatically by the CT 
workstation by drawing its major axis. In clinical practice, the 
growth rate of lung nodules is managed based on the nodules' 
volume doubling time, and we therefore defined the absolute 
percent volumetric error (APEvol) of the artificial pure GGN by 
the following equation.

APEvol = |Vm − Vt | / Vt × 100 [%]

where Vm is the measured nodule volume and Vt is the true 
nodule volume.

The volumes of the artificial pure GGNs once again with the same 
set 1 month later for the assessment of intraobserver variability.

Figure 1. LSCT-001 chest phantom.
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Image noise
The image noise for HIR, MBIR, and DLR at each dose setting 
were assessed by measuring the standard deviation of the CT 
values for each corresponding pixel between six consecutive 
scans. Circular regions of interest (20-pixel-diameter) were 
placed in the 10-mm-diameter middle lung GGN at the same 
location in all of the image sets (Figure 2). The average standard 
deviation value was measured as an estimate of the image noise.

Statistical analyses
An one-way analysis of variance (ANOVA) was used to test the 
APEvol and image noise data among the three reconstruction 
methods, followed by post hoc pair-wise comparisons based 
on the Tukey-Kramer method to account for multiple compar-
isons. Dunnett’s test was performed to assess the differences in 
the APEvol between MBIR with the low-dose-setting (which is 
similar to the exposure dose in the NLST) and all reconstruction 
methods with the ultra-low-dose setting. Statistical significance 
was accepted at p-values < 0.05.

The inter- and intraobserver agreements for the APEvol data were 
evaluated using Bland-Altman analyses and intraclass correlation 
coefficients (ICCs). The interobserver variability was assessed by 
using the mean results from each observer. In the Bland-Altman 
analysis, the 95% confidence interval for the limits of agreement 
was determined.17 Each ICC was calculated by using two-way 
random single measures with an absolute agreement condi-
tion (ICC1,2) for interobserver agreement and one-way random 
single measures (ICC1,1) for intraobserver agreement. Inter- and 
intraobserver agreement was interpreted in the following way: 
ICC <0.20 = slight agreement, ICC 0.21–0.40 = fair agreement, 

ICC 0.41–0.60 = moderate agreement, ICC 0.61–0.80 = substan-
tial agreement, ICC 0.81–1.0 = perfect agreement. All statistical 
analyses were performed with the JMP Pro 15.0.0 program (SAS 
Institute, Cary, NC, USA).

RESULTS
Radiation doses
Table  1 presents the results with the CTDIvol, DLP, ED, and 
percentage compared with NLST mean ED at each dose settings. 
The relative percentage doses to the low-dose screening of NLST 
in United States were 212.8%, 104.5%, and 14.9% at 100, 50, and 
6.3 mAs setting, respectively. Kim et al set the percentage of dose 
reduction compared to the radiation doses of 6.74 mGy at 120 
kV, 100 mAs setting.8 In addition, a radiation dose was compared 
to the average effective dose of 1.5 mSv in a low-dose scan of 
NLST.8,12 We therefore defined the dose of 5.7 mGy at 100 mAs 
as the standard-dose, 2.8 mGy at 50 mAs as the low-dose, and 0.4 
mGy at 6.3 mAs as the ultra-low-dose settings.

Comparisons of APEvol
Images of the artificial pure GGNs scanned at each dose setting 
are provided as Figure  3. The results of the comparison of 
APEvol values obtained with the HIR, MBIR, and DLR methods 
are summarized in Table  2 and illustrated in Figure  4. In all 
reconstruction methods, the APEvol was larger at low-dose CT 
compared to standard-dose CT. For the 10-mm artificial pure 
GGN, DLR showed a smaller APEvol than the other two recon-
struction methods in the low-dose scanning.

At 6.3 mAs ultra-low-dose setting, there were significant differ-
ences in the APEvol for the 10-mm-diameter middle-lung 
artificial pure GGN (ANOVA, p = 0.0014) among each recon-
structed image. The post hoc analysis showed that the 6.3 mAs 
ultra-low-dose setting images with DLR (1.4  ±  1.0) had a signifi-
cantly lower APEvol for the 10-mm-diameter middle-lung GGN 
compared to those obtained with HIR (8.0  ±  3.8, p = 0.0022) and 
MBIR (7.3  ±  2.8, p = 0.0053).

At the 50 mAs low-dose setting, there were significant differences 
in the APEvol values for the 6-mm-diameter middle lung-GGN 
(ANOVA, p = 0.0106) among each reconstructed image. The post 
hoc analysis showed that the 50 mAs low-dose setting images 
with DLR (3.4  ±  1.9) had a significantly lower APEvol for the 
6-mm-diameter middle-lung GGN compared to that obtained 
with HIR (16.3  ±  8.3, p = 0.0079).

Figure 2. The Yellow circular regions of interest on 
10-mm-diameter GGNs at the middle lung of the chest phan-
tom (a), and the enlarged image (b).

Table 1. Descriptive statistics for the radiation dose protocols.

Setting
Tube current-time 
product (mAs) CTDIvol (mGy) DLP (mGy ・cm) ED (mSv)

Percentage 
compared with 
NLST mean ED (%)

ultra-low 6.3 0.4 16 0.2 14.9

low 50 2.8 112 1.6 104.5

standard 100 5.7 228 3.2 212.8

CTDIvol, volume CT dose index; DLP, dose-length product; ED, effective dose; NLST, National Lung Screening Trial.
Radiation dose of each CT scan was compared to the average ED of NLST, which was 1.5 mSv.
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Figure 3. CT images of the scanned chest phantom and artificial pure ground-glass nodules (GGNs). The lung apex of the chest 
phantom at the standard dose of 100 mAs with HIR (a) and at the ultra-low-dose of 6.3 mAs with HIR (b), MBIR (c), and DLR 
(d). The middle lung of the chest phantom at the standard dose of 100 mAs with HIR (e) and at the ultra-low-dose of 6.3 mAs with 
HIR (f), MBIR (g), and DLR (h). The 10-mm-diameter GGNs at the middle lung of the chest phantom at the standard dose of 100 
mAs with HIR (i) and at the ultra low dose of 6.3 mAs with HIR (j), MBIR (k), and DLR (l). The overlay images for volume extraction 
in semi-automatic measurement of the 10-mm-diameter GGNs at the middle lung of the chest phantom at the standard dose of 
100 mAs with HIR (m) and at the ultra-low-dose of 6.3 mAs with HIR (n), MBIR (o), and DLR (p).
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At the 100 mAs standard-dose setting, there was no significant 
difference in the APEvol for the lung-apex or middle-lung 
GGNs with 10-and 6 mm diameters among the reconstructed 
images.

Dunnett’s test showed that the ultra-low-dose setting with MBIR 
or HIR resulted in significantly higher APEvol values for the 
10-mm-diameter GGN compared to the low-dose setting with 
MBIR (p < 0.05). For the 6 mm GGN, the ultra-low-dose setting 
with MBIR provided a significantly higher APEvol compared 
to the low-dose setting with MBIR (p < 0.05). However, there 
was no significant difference in the APEvol for the 10- or 6-mm 
GGNs between the ultra-low-dose setting with DLR and the low-
dose setting with MBIR.

Variabilities of volumetric measurements
The Bland-Altman plots for the inter- and intraobserver agreement 
at ultra-low-dose setting regarding volumetric measurements of 
the 10 mm nodule are shown in Figures 5 and 6, and those for the 
6 mm nodule volumetric measurements are shown in Figures  7 
and 8. Table 3 presents the results with mean differences and limits 

of agreement in the variabilities of the volumetric measurements. 
Both the intra- and interobserver volumetric measurement agree-
ment results for DLR were better than those for MBIR and HIR, 
and the corresponding Bland-Altman plots indicated no bias. The 
mean differences in the inter- and intraobserver agreement ranged 
from 1.8 to 5.8% and from −0.6 to 2.5% for the 10 mm nodule, 
and from 3.0 to 9.8% and from 0.2 to 2.3% for the 6 mm nodule, 
respectively. The mean differences in the intra- and intraobserver 
agreement results for DLR were the minimum values compared 
to MBIR and HIR for both nodule sizes. The inter- and intraob-
server agreements for the volumetric measurements by DLR 
showed narrower limits of agreement compared to MBIR and HIR 
(Figures  5–8). The ICCs for the inter- and intraobserver agree-
ment ranged from 0.03 to 0.63 and from 0.18 to 0.51 for the 10 mm 
nodule and from 0.12 to 0.54 and from 0.39 to 0.80 for the 6 mm, 
respectively. The DLR method thus showed a higher ICC for inter- 
and intraobserver agreement compared to HIR and MBIR.

Image noise
The image noise was compared among the three reconstruction 
algorithms, and the results are summarized in Table  4. At the 

Figure 4. The APEvol for the 10 mm-diameter (a), and 6 mm diameter (b) GGNs placed at the lung apex and the middle-lung field 
level. *p < 0.05, Tukey-Kramer method; **p < 0.05, Dunnett’s test.

Figure 5. Interobserver variability in the measured volume of the 10 mm nodule by ultra-low-dose CT at 6.3 mAs with HIR (a), MBIR 
(b), and DLR (c). The variability of DLR was less one-half of that of MBIR. The mean difference is shown by a continuous line; the 
upper and lower limits of agreement are shown by dashed lines.
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6.3 mAs ultra-low-dose setting, there was no significant differ-
ence in the image noise among the three reconstructed sets of 
data (ANOVA, p = 0.1811). A significant difference was observed 
at the 50 mAs low-dose setting (ANOVA, p < 0.0001); the post 
hoc analysis showed that the 50 mAs low-dose setting images 
with HIR (11.1  ±  3.6) had significantly greater image noise 
compared to those with MBIR (9.2  ±  3.3, p < 0.0001) and those 
with DLR (8.9  ±  3.2, p < 0.0001). At the 100 mAs standard-dose 
setting, another significant difference was observed (ANOVA, 
p < 0.0001); the post hoc analysis showed that the 100 mAs 
standard setting images with HIR (9.2  ±  2.9) had significantly 
greater image noise compared to those with MBIR (5.5  ±  1.8, p 
< 0.0001) and DLR (6.9  ±  2.4, p < 0.0001). DLR had significantly 
greater image noise compared to those with MBIR (p < 0.0001).

DISCUSSION
Our present findings suggest that unlike other IR algorithms, 
DLR could be applied to ultra-low-dose CT for the volumetric 
measurement of lung nodules without compromising measure-
ment reliability. We observed that the semi-automated lung 
nodule volumetric measurements were significantly affected by 

the reconstruction algorithms from the aspect of measurement 
accuracy and reproducibility, especially at low-dose settings.

Our results demonstrated that at ultra-low-dose levels, signifi-
cantly lower lung nodule volumetric measurement errors could 
be obtained by DLR compared to MBIR and HIR. At the low- 
and ultra-low-doses of 50 and 6.3 mAs, DLR provided a lower 
APEvol compared to MBIR and HIR in artificial pure GGNs with 
diameters 10 mm and 6 mm. There were significant differences in 
the APEvol for the 10-mm-diameter nodule at the middle lung 
between DLR and MBIR (1.4 and 7.3%, p = 0.0053) at the ultra-
low-dose setting of 6.3 mAs. This may be because MBIR tends to 
be remarkably degraded due to low-frequency noise, particularly 
at low radiation dose settings,18 and because DLR could improve 
the image contrast between artificial pure GGNs and lung paren-
chyma due to its superior noise reduction without a loss of spatial 
resolution.13,19 We observed that at the standard dose setting, 
the image noise was lowest on MBIR images, whereas at ultra-
low-dose settings, DLR provided the lowest image noise because 
the low-frequency noise component was effectively reduced.13 
Regarding CT radiation doses, most studies have reported that 

Figure 6. Intraobserver variability in the measured volume of the 10 mm nodule by ultra-low-dose CT at 6.3 mAs with HIR (a), MBIR 
(b), and DLR (c). The mean difference is shown by a continuous line; the upper and lower limits of agreement are shown by dashed 
lines.

Figure 7. Interobserver variability in the measured volume of the 6 mm nodule by ultra-low-dose CT at 6.3 mAs with HIR (a), MBIR 
(b), and DLR (c). The variability of DLR was less one-half of that of HIR. The mean difference is shown by a continuous line; the 
upper and lower limits of agreement are shown by dashed lines.
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the accuracy of lung nodule volumetric measurements would 
decrease in low-dose CT.8,9,20–22 The excessive noise on a low-
dose chest CT image can cause inaccurate results for lung nodule 
volumetric measurement.23 DLR is thus a suitable reconstruc-
tion method for lung nodule follow-up CT that requires reduc-
tion of the cumulative dose due to repeated radiation exposure.

Our present findings demonstrate that DLR contributes to 
measurement reliability, especially in ultra-low-dose follow-up 
CT. In our Bland-Altman analysis of the data obtained at the 
ultra-low-dose setting, DLR showed a mean difference of volu-
metric measurement <3% in the inter- and intraobserver agree-
ments, and these were smaller compared to those provided by 
HIR and MBIR. Similarly, the limits of agreement with DLR was 
less than  ± 25% and narrower compared to those of MBIR and 
HIR in the inter- and intraobserver agreements. The lung cancer 
screening trials commonly use a follow-up CT schedule of third 

to fourth/year to evaluate the growth of nodules, based on a 
minimum increase of 25%.1,24,25 The DLR algorithm thus enables 
ultra-low-dose CT screening to confirm lung nodule growth. 
In addition, the ICCs of DLR showed moderate or substantial 
agreement in this study, whereas there was only slight inter- and 
intraobserver agreements for HIR and MBIR. Padole et al noted 
that the blurring of lung structures would be due to an increased 
or pronounced blotchy and pixelated appearance related to noise 
reduction processing on MBIR, and that lung abnormalities 
would thus be missed on MBIR images at submillisievert dose 
levels.26 In addition, the increased low-frequency noise in low-
dose images reconstructed by MBIR or HIR induces a degrada-
tion of image texture (such as blurry or plastic-like images).27,28 
In semi-automatic volumetric measurements drawing both ends 
of the lung nodule, the blurring of the contour by MBIR or HIR 
might induce larger measurement error between observers. 
Conversely, Higaki et al reported that the noise power spectral 

Figure 8. Intraobserver variability in the measured volume of the 6 mm nodule by ultra-low-dose CT at 6.3 mAs with HIR (a), MBIR 
(b), and DLR (c). The mean difference is shown by a continuous line; the upper and lower limits of agreement are shown by dashed 
lines.

Table 3. Inter- and intra observer agreement of the GGNs' volumes on ultra-low dose CT image reconstructed with each algorithm.

Nodule size Type of agreement Type of agreement Mean differencea (limits of agreement, %) ICCb

10 mm Inter observer HIR 5.8 (-7.1, 18.7) 0.0307

MBIR 2.1 (-12.3, 16.6) 0.2999

DLR 1.8 (-4.9, 8.5) 0.6354

intra observer HIR 2.5 (-13.9, 18.9) 0.1834

MBIR 2.4 (-10.2, 14.9) 0.4436

DLR −0.6 (-9.0, 7.8) 0.5143

6 mm Inter observer HIR 9.8 (-38.7, 58.3) 0.2763

MBIR 6.8 (-27.2, 40.7) 0.1241

DLR 3.0 (-18.3, 24.3) 0.5417

intra observer HIR 2.3 (-31.9, 36.5) 0.6049

MBIR 1.5 (-25.6, 29.0) 0.3935

DLR 0.2 (-17.2, 17.5) 0.7967

HIR, Hybrid iterative reconstruction; MBIR, Model-based iterative reconstruction; DLR, deep learning reconstruction; ICC, intraclass confidence 
coefficient.
aBland-Altman analysis.
brandom single measures with an absolute agreement condition (ICC [1,1], [2, 1]).
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curve of DLR images was superior especially for low-frequency 
components because the teaching images were scanned at rela-
tively high radiation doses and reconstructed with MBIR whose 
parameters were adjusted to obtain the best image quality. We 
thus speculate that the deterioration of the ultra-low-dose image 
quality on MBIR and HIR reduced the inter- and intraobserver 
agreement compared to that on DLR in our present investigation.

DLR has the potential for an 85% reduction in exposure 
compared to the effective dose used in the NLST. Our present 
results demonstrate that compared to other reconstruction algo-
rithms, DLR can improve the accuracy of volumetric measure-
ments of pure GGNs and reduce volumetric measurement 
variability, especially at the ultra-low-dose setting. There was no 
significant difference between the APEvol of MBIR with the low-
dose-setting (which is similar to the exposure dose in the NLST) 
and that of DLR with the ultra-low-dose setting. Dose reduc-
tion is especially important for the follow-up of pure GGNs, 
because these nodules require repeated CT examinations due to 
their slower growth compared to solid or part-solid nodules. A 
further exposure dose reduction would thus be achievable for the 
volumetric measurement of pure GGNs while maintaining diag-
nostic accuracy by using the DLR algorithm.

This study has several limitations. It was a phantom study, and 
the shape and CT value of the targeted artificial pure GGNs was 
limited to spherical and −660 HU, respectively. These values 
differ from those of pure GGNs examined in vivo. In addition, 
the number of nodules was limited. We believe that a larger 
number of nodules with various diameters, attenuations, and 
margin characteristics are required for a more precise evaluation 

of measurement feasibility. Second, multiple parameters (noise 
reduction level) for each reconstruction algorithm were not eval-
uated. In this study, only one set of parameters for each algo-
rithm was evaluated. We focused on the effect elicited by the 
difference in the reconstruction algorithm rather than the noise 
reduction level in the reconstruction parameter. However, it is 
possible that adjusting the parameters to match the noise and 
spatial resolution of the three algorithms may provide results 
that differ from those of our present study. A validation study 
is necessary to determine whether the noise reduction level for 
each reconstruction algorithm affects the volumetric measure-
ment of GGNs. Finally, only one software package was used for 
the semi-automated method, and only one CT scanner of a single 
vendor was used. Further studies comparing various software 
packages are needed, and the influence of different CT scanners 
should be identified.

CONCLUSION
DLR was superior to both MBIR and HIR for the volumetric 
measurement of pure GGNs by ultra-low-dose CT. Substantial 
dose reductions might be achieved in lung CT screening for the 
volumetric measurement of pure GGNs by adapting DLR.
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Table 4. The image noise provided by HIR, MBIR, and DLR at each dose setting.

Dose setting

HIR MBIR DLR One-way ANOVA

Tukey-Kramer test

HIR vs MBIR HIR vs DLR MBIR vs DLR

Mean ± SD p-value p-value p-value p-value
Ultra-low-dose 16.3 ± 5.5 17.1 ± 6.2 16.3 ± 5.8 0.1811 - - -

Low-dose 11.1 ± 3.6 9.2 ± 3.3 8.9 ± 3.2 <0.0001 <0.0001 <0.0001 0.7274

Standard-dose 9.2 ± 2.9 5.5 ± 1.8 6.9 ± 2.4 <0.0001 <0.0001 <0.0001 <0.0001

ANOVA, analysis of variance; DLR, deep learning reconstruction;HIR, Hybrid iterative reconstruction; MBIR, Model-based iterative reconstruction.
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