MRI-Guided Robotic Prostate Biopsy and Brachytherapy: Update from the EU-funded CoBra Project

Sarah Wilby1,2,a, Sepaldeep Singh Dhaliwal3, John Van Den Dobbelsteen4, Sina Firouzy2, Dominic Hodgson1, Dylan Jones3, Ashraf Labib2, Yoodhvir S. Nagar1, Antony L. Palmer1,2, Wojciech Polak1,2, Martijn de Vries4, Pieter Wiskerke5, Rochdi Merzouki3

1 Portsmouth Hospitals University NHS Trust, UK, 2 University of Portsmouth, UK, 3University of Lille, France, 4TU Delft, Netherlands, 5Demcon, Netherlands, *sarah.wilby@porthosp.nhs.uk

The Interreg 2 Seas (EU)-funded CoBra research initiative is a five year project to develop a novel device for MR-guided robotic biopsy and brachytherapy for prostate cancer. We report on research achievements approaching three years into the work. We present details from several of the work packages: 1) MRI-safe I-125 seed delivery module, and evaluation of MR seed artefact of the MR-guided robot; 2) MRI-safe biopsy system; 3) novel steerable needles developed to improve access to all parts of the prostate; 4) prototype trajectory planning for ideal needle paths from an optimal number of insertion points; and 5) phantoms designed to test MR image quality in the presence of needles and seeds.

Results

CoBra Robot

• The CoBra-robot is actuated with MR compatible motors. It’s placed at the entrance to the bore, targeting the prostate at isocentre. The seed delivery module, placed next to the robot, uses I-125 BEBIG seeds.

MRI Safe Robotic Biopsy Module

A novel design has been developed for the robotic biopsy module which attaches to the robot. This includes unique methodology to automatically remove prostate core from the needle.

Quality Assurance Phantom

• Phantom will be used to confirm geometric accuracy to which needle tips and seeds can be located in MR images.
• Relaxation time has been measured for a potential PTMM consisting of Agar, Carrageenan, GeCl3 and water.
• Phantom construction:
 • PMMA 3D grid (3 x 3 x 3, 15 mm cubes) filled with PTMM, with 3D printed needle guide for precise placement of needle tip.
 • 8 x 5 mm deep PTMM discs (60 mm diameter) with preconfigured loose seeds on each layer in clinically relevant arrangements.
 • Grid and seed stack contained in Perspex cylinder filled with oil.

Active Steerable Needle Design

Active steering during the procedure
• Steer around critical organs and anatomical obstructions.
• Correct for positioning errors caused by deflection.
 • Needle curvature follows orientation of the tip
 • Steerable inner needle
 • Flexible outer catheter
 • Large range lateral needle steering
 • Suitable for both stranded and loose seeds

Conclusions

Approaching the three year point of the project, we present key outcomes and deliverables, on the MRI-guided robotic brachytherapy and biopsy system, prototype parts and software that have been developed and initial test results. The CoBra project is generating new knowledge of benefit to brachytherapy and biopsy, with broader applications in the medical field.