Mr. S. Patefield, MPhil, TDCR(R), Cert. (Ed),
Senior Lecturer,
Medical Imaging Sciences,
University of Cumbria,
Bowerham Campus,
LANCS., ENGLAND.

June 2012

Note; no reproduction of this presentation is allowed without the authors / institution’s permission
Section 1; Imaging Technologies CR/DR

Section 2; Exposure Indices
CR (PSP) Imaging Systems; @ Lancaster & Carlisle
CR Technology

The CR phosphor:

A CR plate is based on a fluorescent screen and housed in a conventional ‘cassette’

Most CR systems use a Barium Fluoro-bromide phosphor,

This is then “doped” with Europium

The Europium changes the chemical structure of the phosphor to “trap” electrons on x-ray exposure
In a fluorescent screen; K shell electrons are normally ‘bound’ within a low energy band within the chemical structure of the screen phosphor.
When donated energy by an x-ray photon, electrons can ‘jump up’ to a higher energy level.
However, they leave a positive ‘hole’ behind them and will gradually fall back giving off the energy they gained as light.
In a film imaging system we captured the light using photographic film, the light forming ‘silver centers’ in the emulsion, ‘the latent’ image.
In a CR phosphor, an impurity is added which creates ‘positive’ holes in the higher energy band.
In approx. 50% of interactions, the electron is trapped
During and after exposure, about 50% of the electrons remain trapped, the rest fall back almost immediately.
Over time, due to thermal energy, trapped electrons fall back spontaneously over many hours.

'Digital Latent Image'

Low energy band

electrons

Afterglow
As the laser scans, electrons are released from each pixel location, which produces photons of blue light. These are fed into the photomultiplier tube via a fibre-optic light guide.
CR (PSP) Imaging Systems

Laser scanning

- **Blue Light emitted as electron drops back**
- **‘Digital Latent Image’**
- **Low energy band**

A red laser disturbs electrons in traps
As the laser scans, electrons are released from each pixel location, which produces photons of blue light. These are fed into the photomultiplier tube via a fibre-optic light guide.
CR (PSP) Imaging Systems; Photomultiplier tube

Figure 1

http://micro.magnet.fsu.edu
The coating applied to the photocathode is crucial to the spectral sensitivity of the device, for instance this coating would respond to both red and blue light.
The second coating would be better as the response to red light is very poor.

Across the whole spectrum, however, QDE is generally low, and never more than 35%
As the laser scans, electrons are released from each pixel location, which produces photons of blue light.

However, the speed at which the laser scans the plate is variable. For a given ‘quantisation rate’ in the ADC, the pixel matrix obtained can be related to the size of the plate used.

<table>
<thead>
<tr>
<th>Plate size mm</th>
<th>Pixels in x</th>
<th>Pixels in y</th>
<th>X / Pixels in x</th>
<th>Y / Pixels in y</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 x 430 [x,y]</td>
<td>2072</td>
<td>2520</td>
<td>0.17 mm</td>
<td>0.17 mm</td>
</tr>
<tr>
<td>240 x 300</td>
<td>2400</td>
<td>3020</td>
<td>0.10 mm</td>
<td>0.10 mm</td>
</tr>
<tr>
<td>180 x 240</td>
<td>1792</td>
<td>2392</td>
<td>0.10 mm</td>
<td>0.10 mm</td>
</tr>
</tbody>
</table>

As shown in the table above; the pixel matrices have been altered according to psp size, giving smaller pixels using small plates compared to the largest plates, for similar overall scan times.
As the laser scans, electrons are released from each pixel location, which produces photons of blue light. These are fed into the photomultiplier tube via a fibre-optic light guide.
CR (PSP) Imaging Systems; Digital image processing

At a known mAs the histogram should fall in the middle of the range yielding the ‘optimum’ EI value for that manufacturer.

12 bit ADC

<table>
<thead>
<tr>
<th>LUT</th>
<th>PIXEL CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001100111010</td>
</tr>
</tbody>
</table>

Signal amp.

Histogram bin

white | 2047 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>4095</td>
</tr>
</tbody>
</table>
CR (PSP) Imaging Systems; Phosphor annealing (erase)

Strong white light exposure approx. 20s

‘Digital Latent Image’

Low energy band

Electron traps cleared ready for next exposure
DR Detectors

Are multiple coated TFT’s, in a large ‘flat plate’ format

Most modern ‘Radiography’ DR systems use a Cesium Iodide [CsI] crystal fluorescent layer coated above an electron emissive layer of amorphous Silicon [a-Si] on a glass substrate

Image acquisition is a two stage process, x-ray conversion to light, followed by light conversion to electrons

The electrons are ‘trapped’ in the silicon semi-conductor until read-out as ‘charge packets’
DR Imaging Systems – @ Lancaster & Carlisle

University of Cumbria
www.cumbria.ac.uk
Csl needle structure

Needle diameter
6 μm

a-Si ‘patches’
The ‘active pixel array’ is of a ‘fixed’ size or matrix. The physical size of this active area can be up to 45 x 45 cms. With a typical matrix of around 9 Mega-pixels, the pixel pitch is around 125 microns or 0.125 mm².

The active array is often ‘tiled’, into 4 quadrants to ease manufacturing problems.
The ‘pixels’ are individually isolated within the a-Si ‘patches’ making them a ‘fixed’ size.

The active array switches are closed during the x-ray exposure to allow ‘charge’ to gather in each pixel patch.

Finally the switches are opened, column by column, and the charge packets read out and ‘quantised’ via an ADC [analogue to digital converter].
DETECTIVE QUANTUM EFFICIENCY

An expression of the efficiency of an imaging system’s transfer, from its input to its output, as a percentage of signal to noise ratios (SNR).

DQE is the measure most representative of image quality in terms of an observer’s ability to detect objects of interest in an image.

DQE has superseded reliance upon previous measurement criteria such as measuring MTF or resolution performance as a function of visible line pairs.

\[
DQE = \frac{SNR^2 \text{ at detector output}}{SNR^2 \text{ at detector input}}
\]

Measures transfer of both signal and noise.

DQE limited in practice to about 70%
CR & DR Comparisons

<table>
<thead>
<tr>
<th>CR</th>
<th>DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQE</td>
<td>0.25 – 3.0</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>0.1mm – 0.17mm</td>
</tr>
<tr>
<td>Bit depth</td>
<td>12 bit</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>~</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>high</td>
</tr>
<tr>
<td>Throughput</td>
<td>film-like 60s cycle</td>
</tr>
</tbody>
</table>
This costs just £20!
My advice is:
1. Buy it,
2. Read it?