Radiation Protection and Safety

Radiology SSU Workbook

Author: Dr Georgie Matthews

Overview

- Interesting facts
- A little bit of basic physics
- Radiation and cell damage
- Effects and relative risk of radiation exposure
- Making the right choices for your patient
- Safety in a radiology department

A little bit of basic physics.....

- X-Rays are created using an x-ray tube
- They leave the tube heading towards the patient in a beam
- They pass through the patient
- Some x-rays will be absorbed by the patient
- Some will pass straight through
- The x-rays are detected and a black and white image is formed

Why does radiation protection matter?

- When x-rays travel through the body they collide with atoms
- Collision leads to ionisation
- Ionization of cells causes inherent damage
 - Indirect cell damage by free radical formation
 - Direct cell damage by molecular change
- Damage may be temporary or permanent
- Rapidly dividing cells are more susceptible

Have a go... Question 1

Put these organs in an order of how susceptible they are to radiation;

Stomach, bone, testes, lung, brain, skin, breast

Why does radiation protection matter?

- Dose dependant biological effects;
 - Skin erythema, permanent skin damage, hair loss, sterility.
- Other biological effects, such as development of cancer, are random.
- Radiation exposure to reproductive organs carries further potential risk to future generations.
- Children are more radiosensitive than adults and irradiation of a fetus should be avoided wherever possible.
- The fetus is most at risk in the 3-8th week of pregnancy, damage may be sufficient to cause spontaneous abortion, or induce birth defects.

Dose in perspective¹

Source of Exposure	Dose
135g bag of Brazil nuts	o.oo5 mSv
Chest X-ray	0.02 mSv
Transatlantic flight	o.o7 mSv
CT scan of the head	1.4 mSv
UK average annual radiation dose	2.7 mSv
CT scan of the chest	6.6 mSv
Average annual radon dose to people in Cornwall	7.8 mSv
Whole body CT scan	10 mSv
Level at which changes in blood cells can be readily observed	100 mSv
Acute radiation effects including nausea and a reduction in white blood cell count	1000 mSv
Dose of radiation which would kill about half of those receiving it in a month	5000 mSv

Test Yourself.....Question 2:

By how many times is a CT chest dose higher than a plain chest X-ray?

Ordering Tests Involving Radiation

- What do I want to know?
- Is there an alternative test without radiation?
- Is my patient pregnant?
- If you are in doubt about justifying a procedure or investigation you should discuss it with a radiologist.

Test Yourself....Question 3:

17 year old female patient with RIF pain ? Appendicitis ? Ovarian Cyst bHCG –ve

What would be the most appropriate imaging to order?

Tests with Radiation

- •X-Rays
- •Fluoroscopy e.g. Barium Enema
- •CT
- •Image intensifier in theatre

Tests without Radiation

- Ultrasound
- •MRI

Safety in the department

- Staff are at potential risk from radiation exposure.
- The doses that radiologists and radiographers are exposed to are generally small.
- Radiation exposure, no matter how small, carries some risk.
- Local rules are enforced to ensure that dosimetry badges and protective clothing such as lead aprons are worn, in order to monitor and reduce staff radiation dose.
- Knowledge of the 'inverse square law' helps in reducing dose.
 This states that the dose to a given area is quadrupled by halving the distance from the radiation source. Simply put, standing back from a source of radiation reduces dose to staff. This is particularly important during interventional radiology cases where staff are working close to the X-ray beam.

A few safety tips in the department....

- Be aware of your surroundings....
- Make sure you check the lit signs before you enter a room
- Keep an eye on everyone around you, use them as a guide for what you should be doing
- If everyone is wearing leads ask if you should be as well
- Don't be afraid to ask questions, it's not always easy to know where you can stand or what you should do

References

1.http://www.hpa.org.uk/Topics/Radiation/

UnderstandingRadiation/

UnderstandingRadiationTopics/

DoseComparisonsForIonisingRadiation/